RU2207969C2 - Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями - Google Patents

Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями Download PDF

Info

Publication number
RU2207969C2
RU2207969C2 RU2001112734A RU2001112734A RU2207969C2 RU 2207969 C2 RU2207969 C2 RU 2207969C2 RU 2001112734 A RU2001112734 A RU 2001112734A RU 2001112734 A RU2001112734 A RU 2001112734A RU 2207969 C2 RU2207969 C2 RU 2207969C2
Authority
RU
Russia
Prior art keywords
spacecraft
solar
sun
angle
vector
Prior art date
Application number
RU2001112734A
Other languages
English (en)
Other versions
RU2001112734A (ru
Inventor
А.В. Богачев
Е.Ф. Земсков
В.С. Ковтун
И.В. Орловский
В.Н. Платонов
А.В. Соколов
Ю.П. Улыбышев
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева"
Priority to RU2001112734A priority Critical patent/RU2207969C2/ru
Publication of RU2001112734A publication Critical patent/RU2001112734A/ru
Application granted granted Critical
Publication of RU2207969C2 publication Critical patent/RU2207969C2/ru

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение относится к области управления угловым и орбитальным движением космических аппаратов (КА). Предлагаемый способ использует повороты солнечных батарей КА на различные углы в солнечном потоке для формирования управляющих воздействий. Последние определяют по измеренному направлению на Солнце и заданному приращению характеристической скорости КА. Измеряют также кинетический момент в системе силовых гироскопов и определяют суммарный кинетический момент КА. Углы поворота солнечных батарей определяют с учетом предельно допустимой разницы между током, генерируемым батареями, и потребляемым на борту КА. Кроме того, прогнозируют насыщение силовых гироскопов от моментов сил солнечного давления и при необходимости заблаговременно разворачивают по крайней мере некоторые солнечные батареи на углы, создающие моменты разгрузки гироскопов. Изобретение позволяет без специального солнечного паруса изменять направление действия силы относительно направления на Солнце, непрерывно формируя управляющие воздействия и обеспечивая большее изменение характеристической скорости КА. 4 ил.

Description

Изобретение относится к области управления угловым движением космических аппаратов (КА) с силовыми гироскопами (СГ) и поворотными солнечными батареями (СБ).
Известен способ формирования управляющих воздействий на КА (см. "Пленочные отражатели в космосе", А.В. Лукьянов, издательство Московского Университета, 1977 г., стр. 46-53), суть которого заключается в том, что управляющие воздействия на КА создаются при помощи использования давления потока солнечного излучения на специальную конструкцию - солнечный парус. Основной недостаток рассмотренного способа и системы заключен в том, что такое формирование управляющих воздействий требует создания сложного дополнительного устройства - солнечного паруса со своей системой управления.
Известен другой способ формирования управляющих воздействий на КА (см. "Управление орбитой стационарного спутника", Г.М. Чернявский, В.А. Бартенев, В. А. Малышев, Москва, "Машиностроение", 1984 г., стр. 104-108), позволяющий значительно упростить конструкцию солнечного паруса и систему управления, по технической сути наиболее близкий к предлагаемому изобретению и выбранный авторами в качестве прототипа.
Способ-прототип включает в себя измерение единичного вектора направления на Солнце
Figure 00000002
определение по нему и заданному приращению характеристической скорости космического аппарата
Figure 00000003
требуемого, ориентированного относительно направления на Солнце, управляющего воздействия на космический аппарат и расчетного времени приложения управляющего воздействия к космическому аппарату, при котором эффективность этого воздействия максимальна, формирование требуемого управляющего воздействия на космический аппарат в течение заданного интервала времени путем раскрытия солнечного паруса в расчетный момент времени. Направление формируемого управляющего воздействия противоположно направлению на Солнце.
Основной недостаток способа-прототипа заключен в том, что его применение позволяет управлять только параметрами траектории движения КА и не решает вопроса управления кинетическим моментом КА, который непременно встает, так как при формировании управляющей силы формируется и момент. Управляющее воздействие всегда направлено в сторону, противоположную направлению на Солнце, а поэтому действует на КА только в той точке орбиты, где оно наиболее эффективно и в течение непродолжительного интервала времени, что ограничивает величину приращения характеристической скорости КА. Кроме того, для создания управляющего воздействия используется солнечный парус, который утяжеляет конструкцию и усложняет систему управления КА.
Техническим результатом, достигаемым данным изобретением, является формирование на КА и управляющих сил и моментов, что позволяет не только обеспечивать заданное изменение характеристической скорости, но и управление кинетическим моментом КА. Предлагаемый способ позволяет изменять направление действия силы относительно направления на Солнце, что дает возможность непрерывно формировать управляющие воздействия и, следовательно, обеспечить большее изменение характеристической скорости. Кроме того, предлагаемый способ использует для формирования управляющих воздействий существующие на КА солнечные батареи и не требует специального солнечного паруса.
Указанный технический результат достигается тем, что в способе формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями, включающем измерение единичного вектора направления на Солнце
Figure 00000004
определение по нему и заданному приращению характеристической скорости космического аппарата
Figure 00000005
требуемого, ориентированного относительно направления на Солнце, управляющего воздействия на космический аппарат и расчетного времени приложения управляющего воздействия к космическому аппарату, формирование требуемого управляющего воздействия на космический аппарат в расчетный момент времени, в отличие от известного, начиная с текущего момента времени, через заданные интервалы времени измеряют вектор абсолютной угловой скорости космического аппарата
Figure 00000006
измеряют вектор кинетического момента
Figure 00000007
в системе силовых гироскопов, определяют суммарный вектор кинетического момента космического аппарата
Figure 00000008
сравнивают модуль кинетического момента космического аппарата G с предельно допустимым значением кинетического момента Gкp, если G<Gкp, то определяют максимальный угол разворота нормали к активной поверхности солнечных батарей относительно проекции на орбитальную плоскость единичного вектора направления на Солнце αmax, при котором выполняется условие Jпp-Jн>ΔJ, где Jпр - ток притока от солнечных батарей, Jн - ток нагрузки, ΔJ - предельно допустимое значение разницы тока притока и потребления, определяют угол поворота нормали к активной поверхности солнечных батарей относительно проекции на орбитальную плоскость единичного вектора направления на Солнце -π/2<α<π/2, при котором
Figure 00000009
для измеренного значения единичного вектора направления на Солнце, где
Figure 00000010
управляющая сила от воздействия светового потока на поверхность солнечных батарей, если |α|<αmax, то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол α относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
Figure 00000011
то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
Figure 00000012
то определяют
Figure 00000013
составляющую вектора суммарного кинетического момента космического аппарата
Figure 00000014
в плоскости орбиты, если
Figure 00000015
, где Gгр - заданное граничное значение проекции суммарного кинетического момента космического аппарата на плоскость орбиты, при превышении которого требуется разгрузка накопленного кинетического момента от сил солнечного давления, то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
Figure 00000016
то определяют угол α1 = (αmax-dα)sign(α), где dα - уставочный угол разворота солнечных батарей относительно максимального значения для разгрузки накопленного кинетического момента, выбирают солнечные батареи, при развороте которых на угол α1 формируемый управляющий момент
Figure 00000017
от сил солнечного давления на поверхность солнечных батарей удовлетворяет условию
Figure 00000018
при развороте всех остальных солнечных батарей на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, формируют управляющее воздействие на космический аппарат, разворачивая выбранные солнечные батареи на угол α1, а все остальные солнечные батареи на угол sign(α)α2 относительно проекции на плоскость орбиты единичного вектора направления на Солнце, где α2 - максимальный угол разворота остальных солнечных батарей, при котором выполняется условие Jпр-Jн>ΔJ.
Одной из важнейших задач управления КА является задача управления параметрами орбиты. Для ее решения обычно используют реактивные или электромагнитные двигатели, которые способны создавать значительные по величине ускорения в течение коротких промежутков времени. Существуют решения этой задачи, использующие малые силы, непрерывно воздействующие на КА. Как пример, можно привести солнечный парус, использующий давление потока светового излучения Солнца на пленочную поверхность. Такие решения как правило более экономичны, и их выгодно использовать в тех случаях, когда не требуется создание больших управляющих воздействий, например, для поддержания в рабочей точке стационарного спутника. Предлагаемый способ использует в качестве солнечного паруса существующие на КА солнечные батареи. Основное назначение СБ - обеспечение КА электроэнергией, и, обычно, управление СБ осуществляется таким образом, чтобы их нормаль к активной поверхности была как можно ближе к направлению на Солнце. Однако, при проектировании СБ учитывается снижение электрических характеристик СБ в связи с их старением, поэтому, особенно в начальный период использования КА, ток притока электроэнергии от СБ значительно превышает ток потребления. Это позволяет, отклоняя СБ относительно направления на Солнце, решать не только задачу электропитания, но и задачу управления КА. Причем, так как при отклонении СБ относительно направления на Солнце создаются и силы и моменты, то таким образом можно управлять не только параметрами орбиты КА, но и суммарным кинетическим моментом КА.
Суть изобретения поясняется фиг 1-4. На фиг.1 приведена блок-схема предлагаемой системы, на фиг.2 - используемые системы координат, на фиг.3 - КА с солнечными батареями, на фиг.4 - силы солнечного давления на элементарную площадку.
Примером системы, реализующей данный способ, может служить система управления движения КА "Ямал 100". Блок-схема системы, приведенная на фиг.2, включает 1 - блок определения навигационных параметров (БОНП), 2 - датчики ориентации (ДОР), 3 - датчики угловой скорости (ДУС), 4 - блок измерения кинетического момента системы СГ (БИКМ), 5 - блок определения вектора суммарного кинетического момента (БОВСКМ), первый вход которого связан с выходом ДУС 3, а второй вход - с выходом БИКМ 4, 6 - система ориентации солнечных батарей (СОСБ), 7 - солнечные батареи (СБ), 8 - корпус КА, 9 - силовые гироскопы (СГ), 10 - блок определения углового положения КА (БОУП), первый вход которого связан с первым выходом БОНП 1, второй вход - с выходом ДОР 2, третий вход - с выходом ДУС 3, 11 - блок определения координат единичного вектора направления на Солнце в связанном базисе (БОВССБ), первый вход которого связан со вторым выходом БОНП 1, второй вход - с первым выходом БОУП 10, а выход - с первым входом СОСБ 6 и первым входом БОУВТО 15, 12 - блок определения параметров управления угловым движением (БОПУУД), первый вход которого связан со вторым выходом БОУП 10, второй вход - с выходом ДУС 3, третий вход - с выходом БОВСКМ 5, 13 - блок формирования управляющих сигналов на СГ (БФУССГ), вход которого связан с первым выходом БОПУУД 12, 14 - блок задания требуемого изменения характеристической скорости (БЗТИХС), 15 - блок определения управляющих воздействий от СД и требуемого отклонения СБ (БОУВТО), второй и третий входы которого связаны соответственно со вторым и третьим выходами БОПУУД 12, четвертый вход - с выходом БОВСКМ 5, пятый вход - с выходом БЗТИХС 14, а выход - со вторым входом СОСБ 6. Условно показано воздействие на СБ 7 сил солнечного давления и суммирование на корпусе КА 8 следующих моментов: управляющего момента от СГ 9 (MГ), суммарного момента всех внешних возмущающих сил (МВ) и управляющего момента (MУ) от СБ 7. Дополнительно приведена механическая связь СОСБ 6 с СБ 7, БФУССГ 13 с СГ 9 и СГ 9 с БИКМ 4, а также установка ДОР 2 и ДУС 3 на корпусе КА 8.
Работает система следующим образом. БОУП 10 на основе координат вектора угловой скорости
Figure 00000019
в связанной системе координат, поступающих с ДУС 3, и данных, поступающих с ДОР 2, формирует нормированный кватернион разворота А от выбранной инерциальной системы координат к связанной системе координат, путем интегрирования уравнения
Figure 00000020

компоненты которого используются в БОВССБ 11, а также кватернион управления N, компоненты которого используются в БОПУУД 12. Кватернион N соответствует развороту от орбитального базиса к связанному
N = L-1•A,
где L - нормированный орбитальный кватернион, соответствующий развороту от выбранной инерциальной системы координат к орбитальной системе координат, формируемый БОНП 1, принцип работы которого подробно представлен в "Навигация, наведение и стабилизация в космосе" (Авторы Ч.С. Дрейпер и др. "Машиностроение", Москва, 1970 г. ). Оси связанной системы координат OXYZ направлены таким образом, что при поддержании орбитальной ориентации они совпадают с осями орбитальной системы координат и ось Х направлена на центр Земли, ось Z - противоположно вектору орбитальной угловой скорости, а ось Y дополняет их до правой тройки (см. фиг.2). На фиг.2 цифрами обозначены: 16 - Земля, 17 - траектория движения КА, 18 - направление падающего солнечного света, 19 - КА. БОВСКМ 5 формирует для БОПУУД 12 и БОУВТО 15 компоненты вектора суммарного момента
Figure 00000021
где J - тензор инерции КА. БОПУУД 12 формирует расчетное значение вектора требуемого управляющего момента для построения и поддержания ориентации КА
Figure 00000022
компоненты которого используются БФУССГ 13, и требуемый вектор орбитальной угловой скорости
Figure 00000023
в связанном базисе
Figure 00000024
координаты которого используются в БОУВТО 15, здесь ω0 - модуль орбитальной скорости,
Figure 00000025
единичный вектор, направленный противоположно оси Z орбитальной системы координат. Кроме того, БОПУУД 12 формирует для БОУВТО 15 требование на формирование управляющего момента от сил солнечного давления. Требование на формирование управляющего момента от сил солнечного давления формируется при отсутствии проведения коррекции орбиты на двигателях, когда модуль суммарного кинетического момента не превышает заданного предельного значения и когда построена и поддерживается орбитальная ориентация, т.е.
Figure 00000026
где δN - уставка, определяющая границы зоны нечувствительности по углу,
δω - уставка, определяющая границы зоны нечувствительности по угловой скорости,
I - единичный кватернион.
БФУССГ 13 использует компоненты вектора
Figure 00000027
для формирования сигналов на электрические двигатели, управляющие скоростями вращения СГ.
БОВССБ 11 использует координаты единичного вектора направления на Солнце в выбранной инерциальной системе координат, формируемые БОНП 1 и компоненты кватерниона А из БОУП 10. По ним рассчитываются координаты единичного вектора направления на Солнце в связанной системе координат, используемые в СОСБ 6 и БОУВТО 15.
Figure 00000028

где RE - координаты единичного вектора направления на Солнце в связанной системе координат,
RI - координаты единичного вектора направления на Солнце в выбранной инерциальной системе координат.
СОСБ 6 осуществляет разворот СБ 7 в требуемое положение. КА "Ямал-100" с поворотными СБ схематично представлен на фиг.3, где цифрами обозначены: 20 - центральный блок, 21 - СБ 1, 22 - СБ 2. Положение каждой СБ на КА "Ямал-100" задается углом поворота данной СБ относительно "исходного" положения. В исходном положении нормаль к рабочей поверхности СБ направлена противоположно оси Х связанной системы координат. Угол поворота измеряется в зонах (1 зона равна Δα≈2,81o): USB[0] - для первой СБ и USB[1] - для второй. Поворот осуществляется по часовой стрелке, если смотреть на батарею со стороны центрального блока.
По координатам единичного вектора на Солнце в связанной системе координат RE из БОВССБ 11 определяются положения СБ USB0[0] и USB0[1], при которых нормали батарей наиболее близки к проекции
Figure 00000029
на плоскость орбиты. Далее формируются
USB[0]=USB0[0]+DZ[0] и
USB[1]=USB0[1]+DZ[1],
где DZ[0] и DZ[1] - поправки к положению соответствующих СБ относительно направления на Солнце, формируемые в БОУВТО 15. Затем СОСБ 6 осуществляет разворот СБ 7 при помощи электрических двигателей до тех пор, пока первая батарея не придет в зону USB[0]-2, a вторая - в зону USB[1]+2. После этого разворот батарей прекращается до тех пор, пока вследствие вращения КА они не придут соответственно в зоны USB[0]+2 и USB[1]-2. Далее снова осуществляется разворот и т.д.
Описание вышеуказанных блоков и их реализация на КА "Ямал 100" приведены в техническом описании "Система управления движением и навигацией" (300ГК. 12Ю000A-0TO).
Чтобы пояснить принцип работы БОУВТО 15, оценим силы и моменты, действующие на КА со стороны сил солнечного давления.
Силы, действующие со стороны света на элементарную площадку dS, изображены на фиг.4. Здесь 23 - площадка dS,
Figure 00000030
единичный вектор в направлении на Солнце,
Figure 00000031
нормаль к поверхности. Сила
df=df1+df2;
df1 = -Pc(n•τ)τdS(1-ε0);
df2 = -2Pc(n•τ)2ndSε0,
здесь ε0 - коэффициент отражения, Рc - давление солнечного света.
Сила
Figure 00000032
и момент
Figure 00000033
действующий на спутник:
Figure 00000034

MУ+-;
M+ = Pcτ×∫(1-ε0)r(τ•n)dS;
M- = 2Pc∫ε0n×r(τ•n)2dS.
Интегрирование производится по всей освещенной поверхности КА.
Основной вклад в эти воздействия вносят силы, действующие на поверхность СБ, и в дальнейшем мы не будем учитывать воздействия, создаваемые силами солнечного давления на корпус КА.
КА "Ямал-100" снабжен двумя поворотными СБ, общая ось которых параллельна вектору орбитальной угловой скорости (см. фиг.4). Найдем проекции суммарного момента
Figure 00000035
на оси инерциальной системы координат OX0Y0Z0. Проинтегрировав по всей поверхности СБ и пренебрегая небольшими периодическими составляющими, возникающими из-за несовпадения центра масс с центром давления, получаем для проекций
Figure 00000036
на плоскость орбиты:
MX = Pc0cos2αcR(-sinα1cos2α1+sinα2cos2α2);
Figure 00000037

Здесь S - суммарная площадь СБ, R - расстояние от центра солнечного давления до центра симметрии каждой батареи,
Figure 00000038
угол между направлением на Солнце и плоскостью орбиты, где τX и τY - проекции единичного вектора направления на Солнце на оси связанной системы координат, α1 и α2 - углы поворота первой и второй батарей соответственно относительно положения, при котором нормаль батареи совпадает с проекцией
Figure 00000039
на плоскость орбиты. Углы будем считать положительными, когда разворот происходит по часовой стрелке, если смотреть со стороны +Z0, а в противном случае - отрицательными.
У проекции вектора
Figure 00000040
на ось Z0 постоянная составляющая отсутствует и разворот СБ на углы α1 и α2 соответственно приводит к возникновению периодической составляющей, изменяющейся с орбитальной частотой и амплитудой
MZ = Pc0cos2αcA(sinα1cos2α1+sinα2cos2α2),
где А - расстояние от центра давления до центра масс КА.
Из приведенных соотношений видно, что разворот той или иной СБ относительно направления на Солнце приводит к возникновению управляющего момента, знак проекции которого на ось Y0 определяется тем, какую СБ повернули, а знак проекции этого момента на ось Х0 - тем, в какую сторону повернули данную батарею. Если разворачивать батареи на
одинаковые углы, то управляющий момент в орбитальной плоскости не создается.
Проекции управляющей силы
Figure 00000041
на оси связанной системы координат при развороте обеих батарей на угол α
Figure 00000042

Figure 00000043

FZ = -PcS(1-ε0)cosαccosατZ,
где τX, τY, τZ - проекции единичного вектора направления на Солнце на оси связанной системы координат.
При отсутствии требования на формирование управляющего воздействия из БОПУУД 12, формирование управляющего воздействия не производится и требуемые отклонения СБ от ориентации на Солнце полагаются равными нулю, DZ[0]=DZ[1] для каждой батареи. Если же требование выставлено, то в начальный момент времени формирования управляющих воздействий численным методом определяется значение угла поворота -π/2<α<π/2, при котором скалярное произведение
Figure 00000044
принимает максимальное значение Nmax, где
Figure 00000045
- требуемое изменение характеристической скорости из БЗТИХС 14. Сравнивается значение полученного угла α с углом αmax≥0, где αmax определяется из соотношения Jmaxcosαmaxcosαc = Jн+ΔJ, где Jmax - максимальный ток притока от СБ, Jн - ток нагрузки, ΔJ - предельно допустимое значение разницы тока притока и потребления. Если |α|<αmax, то для разворота батарей на угол α определяют требуемые отклонения СБ
DZ[0] = [-α/Δα];
DZ[1] = [α/Δα],
где квадратные скобки обозначают выделение целой части. Если |α|≥αmax, но Nmax≥0, то для разворота батарей на угол α′ = αmaxsign(α) определяют требуемые отклонения СБ
DZ[0] = [-α′/Δα];
DZ[1] = [α′/Δα].
Если |α|≥αmax и Nmax<0, то определяется
Figure 00000046
текущая составляющая вектора
Figure 00000047
в плоскости орбиты. Если
Figure 00000048
где Gгр - заданное граничное значение, определяющее границу зоны нечувствительности по кинетическому моменту, то для разворота батарей на угол α′ = αmaxsign(α) определяют требуемые отклонения СБ
DZ[0] = [-α′/Δα];
DZ[1] = [α′/Δα].
Если
Figure 00000049
то определяют угол α1 = (αmax-dα)sign(α), где dα - уставочный угол разворота солнечных батарей относительно максимального значения для разгрузки накопленного кинетического момента, величина которого определяет скорость разгрузки и не превышает αmax. Находят угол α2, решая уравнение Jmaxcosαc(cosα1+cosα2)/2 = Jн+ΔJ.
Отсюда
Figure 00000050

Далее, если при развороте первой и второй батареи соответственно на углы α1 и α2 расчетный управляющий момент удовлетворяет условию
Figure 00000051
то для разворота соответствующих батарей на углы α1 и α2 определяют требуемые отклонения СБ
DZ[0] = [-α1/Δα];
DZ[1] = [α2/Δα].
Если же
Figure 00000052
то для разворота соответствующих батарей на углы α2 и α1 определяют требуемые отклонения СБ
DZ[0] = [-α2/Δα];
DZ[1] = [α1/Δα].
Далее, через заданные интервалы времени Δt производится перерасчет управляющих воздействий и требуемых отклонений DZ[0] и DZ[1]. Наиболее удобно выбирать интервал времени Δt таким образом, чтобы за это время угловое перемещение Солнца относительно аппарата составляло одну зону, т.е. Δt≈10 мин.
Таким образом при развороте СБ в заданное положение создается управляющая сила, имеющая максимальную составляющую в направлении требуемого изменения характеристической скорости. На тех участках орбиты, где невозможно создать такую управляющую силу, создается управляющая сила, имеющая минимальную составляющую, противоположную требуемому изменению характеристической скорости, и управляющий момент
Figure 00000053
разгружающий накопленный кинетический момент гиродинов
Figure 00000054

Для КА "Ямал-100" характерная величина требуемого изменения характеристической скорости для поддержания КА в рабочей точке по долготе ~1 м/с в год. Такое изменение создается при помощи проведения периодических маневров с использованием двигателей. Применение предлагаемого способа позволяет не только уменьшить требуемое суммарное изменение характеристической скорости в 10 раз, но и разгружать накопленный кинетический момент без дополнительных затрат топлива, следовательно, сэкономить топливо для других операций и без каких-либо дополнительных затрат увеличить срок службы КА, что для спутников связи ведет соответственно к уменьшению стоимости каналов связи.

Claims (1)

  1. Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями, включающий измерение единичного вектора направления на Солнце
    Figure 00000055
    определение по нему и заданному приращению характеристической скорости
    Figure 00000056
    космического аппарата требуемого ориентированного относительно направления на Солнце управляющего воздействия на космический аппарат и расчетного времени приложения управляющего воздействия к космическому аппарату, формирование требуемого управляющего воздействия на космический аппарат в расчетный момент времени, отличающийся тем, что, начиная с текущего момента времени, через заданные интервалы времени измеряют вектор абсолютной угловой скорости космического аппарата
    Figure 00000057
    измеряют вектор кинетического момента
    Figure 00000058
    в системе силовых гироскопов, определяют суммарный вектор кинетического момента космического аппарата
    Figure 00000059
    сравнивают модуль кинетического момента космического аппарата G с предельно допустимым значением Gкр кинетического момента и если G<Gкр, то определяют максимальный угол αmax разворота нормали к активной поверхности солнечных батарей относительно проекции на орбитальную плоскость единичного вектора направления на Солнце, при котором выполняется условие Jпр-Jн>ΔJ, где, Jпр - ток притока от солнечных батарей, Jн - ток нагрузки, ΔJ - предельно допустимое значение разницы тока притока и потребления, определяют в интервале -π/2<α<π/2 угол поворота нормали к активной поверхности солнечных батарей относительно проекции на орбитальную плоскость единичного вектора направления на Солнце, при котором
    Figure 00000060
    для измеренного значения единичного вектора направления на Солнце, где
    Figure 00000061
    управляющая сила от воздействия светового потока на поверхность солнечных батарей, и если |α|<αmax, то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол α относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
    Figure 00000062
    то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
    Figure 00000063
    то определяют
    Figure 00000064
    составляющую вектора суммарного кинетического момента космического аппарата
    Figure 00000065
    в плоскости орбиты, если
    Figure 00000066
    ≤Gгр, где Gгp - заданное граничное значение проекции суммарного кинетического момента космического аппарата на плоскость орбиты, при превышении которого требуется разгрузка накопленного кинетического момента от сил солнечного давления, то формируют управляющее воздействие на космический аппарат, разворачивая солнечные батареи на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, если
    Figure 00000067
    >Gср, то определяют угол α1 = (αmax-dα)sign(α), где dα - уставочный угол разворота солнечных батарей относительно максимального значения для разгрузки накопленного кинетического момента, выбирают солнечные батареи, при развороте которых на угол α1 формируемый управляющий момент
    Figure 00000068
    от сил солнечного давления на поверхность солнечных батарей удовлетворяет условию
    Figure 00000069
    при развороте всех остальных солнечных батарей на угол sign(α)αmax относительно проекции на плоскость орбиты единичного вектора направления на Солнце, формируют управляющее воздействие на космический аппарат, разворачивая выбранные солнечные батареи на угол α1, а все остальные солнечные батареи на угол sign(α)α2 относительно проекции на плоскость орбиты единичного вектора направления на Солнце, где α2 - максимальный угол разворота остальных солнечных батарей, при котором выполняется условие Jпр-Jн>ΔJ.
RU2001112734A 2001-05-08 2001-05-08 Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями RU2207969C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001112734A RU2207969C2 (ru) 2001-05-08 2001-05-08 Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001112734A RU2207969C2 (ru) 2001-05-08 2001-05-08 Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Publications (2)

Publication Number Publication Date
RU2001112734A RU2001112734A (ru) 2003-06-10
RU2207969C2 true RU2207969C2 (ru) 2003-07-10

Family

ID=29209617

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001112734A RU2207969C2 (ru) 2001-05-08 2001-05-08 Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Country Status (1)

Country Link
RU (1) RU2207969C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555080C2 (ru) * 2008-10-31 2015-07-10 Таль Способ и система для устранения насыщения инерционных колес космического аппарата
RU2587663C2 (ru) * 2014-10-30 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения тензора инерции космического аппарата
RU2587762C2 (ru) * 2014-11-12 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения тензора инерции космического аппарата
RU2604268C2 (ru) * 2015-04-21 2016-12-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ формирования управляющих воздействий на космический аппарат с фазированной антенной решёткой
RU2614467C1 (ru) * 2015-10-27 2017-03-28 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями
RU2621933C2 (ru) * 2015-09-15 2017-06-08 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления космическим аппаратом дистанционного зондирования земли

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧЕРНЯВСКИЙ Г.М., БАРТЕНЕВ В.А. и др. Управление орбитой стационарного спутника. - М.: Машиностроение, 1984, с. 104-108. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555080C2 (ru) * 2008-10-31 2015-07-10 Таль Способ и система для устранения насыщения инерционных колес космического аппарата
RU2587663C2 (ru) * 2014-10-30 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения тензора инерции космического аппарата
RU2587762C2 (ru) * 2014-11-12 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения тензора инерции космического аппарата
RU2604268C2 (ru) * 2015-04-21 2016-12-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ формирования управляющих воздействий на космический аппарат с фазированной антенной решёткой
RU2621933C2 (ru) * 2015-09-15 2017-06-08 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления космическим аппаратом дистанционного зондирования земли
RU2614467C1 (ru) * 2015-10-27 2017-03-28 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Similar Documents

Publication Publication Date Title
JP2635821B2 (ja) 地球を指向する3軸安定化衛星および付属する太陽と地球を捕捉する方法
CN104267736B (zh) 一种帆船自主控制方法、装置及帆船
US4358076A (en) Method of sun and earth acquisition for three axis stabilized satellites equipped with acquisition sensors
RU2207969C2 (ru) Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями
CN105021188A (zh) 一种双模式仿生偏振/地磁辅助组合导航系统
CN205738030U (zh) 一种新型风光互补供能无人帆船及其控制方法
RU2006120010A (ru) Система управления положением солнечных батарей космического аппарата
RU2457158C2 (ru) Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка
CN102004491B (zh) 一种卫星初入轨段的初始太阳捕获方法
CN110641741A (zh) 双自由度太阳帆板控制方法及其控制系统
JPH0420124B2 (ru)
RU2006102057A (ru) Способ управления положением солнечных батарей космического аппарата и система для его осуществления
RU2544021C2 (ru) Способ ориентации искусственного спутника земли
JPH07228299A (ja) 三軸安定衛星の太陽電池パドル駆動制御装置
JPH04331694A (ja) 太陽電池付き電動帆船
RU2414392C1 (ru) Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат
JPH05240655A (ja) 3軸安定宇宙船および太陽捕捉方法
CN111846181B (zh) 一种使用陀螺惯性海浪发电装置的无人船艇
JP2635708B2 (ja) 地球衛星のピッチ姿勢に対する再捕捉方法
RU2400406C1 (ru) Система построения местной вертикали космического объекта при орбитальной ориентации
RU2007119224A (ru) Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
CN208012610U (zh) 一种方位分罗经用水平装置
RU2614467C1 (ru) Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями
RU2001112734A (ru) Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями
RU2325310C2 (ru) Способ управления ориентацией орбитального космического аппарата с инерционными исполнительными органами при зондировании атмосферы земли

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130509