RU2207473C2 - Абсорбционно-диффузионный холодильный агрегат - Google Patents

Абсорбционно-диффузионный холодильный агрегат Download PDF

Info

Publication number
RU2207473C2
RU2207473C2 RU2001103967/06A RU2001103967A RU2207473C2 RU 2207473 C2 RU2207473 C2 RU 2207473C2 RU 2001103967/06 A RU2001103967/06 A RU 2001103967/06A RU 2001103967 A RU2001103967 A RU 2001103967A RU 2207473 C2 RU2207473 C2 RU 2207473C2
Authority
RU
Russia
Prior art keywords
housing
casing
gap
cylinders
heat exchanger
Prior art date
Application number
RU2001103967/06A
Other languages
English (en)
Other versions
RU2001103967A (ru
Inventor
В.В. Ильиных
Г.Ф. Ерашов
В.С. Козлов
Ю.С. Опара
Original Assignee
Сибирская аэрокосмическая академия им. акад. М.Ф.Решетнева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сибирская аэрокосмическая академия им. акад. М.Ф.Решетнева filed Critical Сибирская аэрокосмическая академия им. акад. М.Ф.Решетнева
Priority to RU2001103967/06A priority Critical patent/RU2207473C2/ru
Publication of RU2001103967A publication Critical patent/RU2001103967A/ru
Application granted granted Critical
Publication of RU2207473C2 publication Critical patent/RU2207473C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

Изобретение относится к бытовой холодильной технике, а именно к холодильным агрегатам. В конструкцию агрегата введен трехпоточный теплообменник между крепким и слабым растворами, позволяющий эффективно использовать температурный потенциал слабого раствора для предварительного нагрева крепкого раствора перед его выпариванием. При этом кожух теплообменника установлен на корпусе с образованием зазоров и его верхний торец герметично соединен с корпусом. Верхний конец подъемной трубы парлифтного насоса может быть выведен в паровую полость корпуса, а нижний подключен с образованием гидрозатвора к емкости адсорбера. Верхняя часть зазора между корпусом и кожухом теплообменника может быть связана посредством штуцера вывода слабого раствора с абсорбером. Использование изобретения позволит повысить экономичность холодильного агрегата при выработке холода. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к бытовой холодильной технике и может найти широкое применение в бытовых холодильниках, снабженных абсорбционно-диффузионными холодильными агрегатами (АДХА).
Известен АДХА (1), содержащий корпус кипятильника, паропровод, электронагреватель, абсорбер, ресивер и теплообменник-регенератор. Кипятильник АДХА снабжен двумя цилиндрами, причем внутренний цилиндр соединен с корпусом, выполнен с нижним заглушенным торцом и в нем размещен электронагреватель, а внешний цилиндр выполнен с открытым верхним торцом, расположенным на уровне крепкого раствора в ресивере, но выше уровня подачи слабого раствора в абсорбер. Зазор между внутренним и внешним цилиндрами подключен паропроводом с образованием гидрозатвора к подъемной трубе парлифтного насоса, верхний конец которой выведен в паровую полость ресивера, а нижний конец подсоединен с образованием гидрозатвора к выполненной из нижней части абсорбера емкости.
Недостатком известного АДХА (1) является низкая экономичность из-за больших потерь тепла в окружающую среду.
Известен АДХА (2) - прототип, который снабжен цилиндрическим корпусом кипятильника со штуцерами выводов слабого раствора и паров хладагента, абсорбером и установленными по оси корпуса тремя коаксиальными цилиндрами, образующими между собой и корпусом кольцевые зазоры, причем внутренний цилиндр выполнен с заглушенным нижним торцом, герметично соединен с корпусом и в нем размещен электронагреватель, верхний и нижний торцы внешнего цилиндра герметично соединены соответственно с внутренним и средним цилиндрами, при этом открытый верхний торец среднего цилиндра расположен с зазором относительно открытого верхнего торца внешнего цилиндра на высоте не ниже уровня крепкого раствора в корпусе и выше уровня подачи слабого раствора в абсорбер, кроме того, в среднем цилиндре расположен паропровод, верхний конец которого выведен в паровую полость зазора между внешним и средним цилиндрами, а нижний конец подсоединен с образованием гидрозатвора к подъемной трубе парлифтного насоса, верхний конец которой выходит в паровую полость корпуса, а нижний выведен из корпуса и подключен с образованием гидрозатвора к выполненной в нижней части абсорбера емкости, причем зазор между средним и внешним цилиндрами подключен в нижней части к штуцеру вывода слабого раствора.
Недостатком известного АДХА - прототипа является его низкая экономичность при работе, обусловленная отсутствием в его конструкции эффективного трехпоточного теплообменника между слабым и крепким растворами, который обеспечивает предварительный нагрев крепкого раствора перед его выпариванием за счет использования высокотемпературного потенциала слабого раствора.
Задача, которая может быть решена при помощи заявляемого АДХА, состоит в уменьшении суточного энергопотребления агрегата за счет эффективного использования тепла слабого раствора для предварительного нагрева крепкого раствора перед выпариванием.
Поставленная задача достигается тем, что агрегат содержит корпус кипятильника со штуцером вывода паров хладагента, кожухом теплообменника со штуцером вывода слабого раствора, абсорбер и три цилиндра, образующие между собой и корпусом кольцевые зазоры, причем внутренний цилиндр выполнен с заглушенным нижним торцом, герметично соединен с корпусом и в нем размещен электронагреватель, при этом верхний и нижний торцы внешнего цилиндра герметично соединены соответственно с внутренним и средним цилиндрами, а открытый верхний торец среднего цилиндра расположен с зазором относительно закрытого торца внешнего цилиндра, кроме того, в среднем цилиндре расположен паропровод, верхний конец которого выведен в паровую полость зазора между средним и внешним цилиндрами, а нижний подсоединен с образованием гидрозатвора к подъемной трубе парлифтного насоса. При этом кожух теплообменника установлен на корпусе с образованием зазора и его верхний и нижний торцы герметично соединены с корпусом, а жидкостные полости зазоров между средним и внешним цилиндрами, а также между корпусом и кожухом теплообменника соединены трубопроводом. Кроме того, верхний конец подъемной трубы парлифтного насоса выведен в паровую полость корпуса, а нижний подключен с образованием гидрозатвора к емкости абсорбера, при этом верхняя часть зазора между корпусом и кожухом теплообменника связана посредством штуцера вывода слабого раствора с абсорбером.
На чертеже представлен схематический чертеж АДХА, который позволяет уяснить конструктивные особенности предлагаемого холодильного агрегата.
Агрегат содержит вертикальный цилиндрический корпус 1 кипятильника со штуцером 2 вывода паров хладагента, абсорбер 3 и установленные по оси корпуса 1 кольцевые зазоры, причем внутренний цилиндр 4 выполнен с заглушенным нижним торцом, герметично соединен с корпусом 1 и в нем размещен электронагреватель 5. Верхний и нижний торцы внешнего цилиндра 6 герметично соединены соответственно с внутренним 4 и средним 7 цилиндрами, при этом открытый верхний торец среднего цилиндра 7 расположен с зазором относительно закрытого торца внешнего цилиндра 6 на высоте не ниже уровня ▽a крепкого раствора в корпусе 1 и выше уровня подачи слабого раствора в абсорбер ▽б. В среднем цилиндре 7 расположен паропровод 8, верхний конец которого выведен в паровую полость зазора между внешним 6 и средним 7 цилиндрами, а нижний конец подсоединен с образованием гидрозатвора к подъемной трубе 9 парлифтного насоса, верхний конец которой выведен в паровую полость корпуса 1, а нижний конец подключен с образованием гидрозатвора к емкости 10 абсорбера 3. На корпусе 1 с образованием зазора установлен кожух 11 теплообменника, верхний и нижний торцы которого герметично соединены с корпусом 1. Жидкостные полости зазоров между средним 7 и внешним 6 цилиндрами, а также между корпусом 1 и кожухом 11 теплообменника соединены трубопроводом 12. Верхняя часть зазора между корпусом 1 и кожухом 11 теплообменника связана посредством штуцера 13 вывода слабого раствора с абсорбером 3.
Работа заявляемого АДХА осуществляется следующим образом.
Внутренняя полость АДХА вакуумируется и заполняется водоаммиачным раствором согласно известным параметрам и пропорциям.
В результате отвода тепла от электронагревателя 5 крепкий раствор в зазоре между средним 7 и внутренним 4 цилиндрами кипит, что приводит к выходу парожидкостной смеси из кольцевого зазора в паровую полость внешнего цилиндра 6. При этом происходит ее разделение на пары хладагента и слабый раствор.
Слабый раствор в виде пленки стекает по нагретым среднему 7 и внешнему 6 цилиндрам, в процессе чего происходит его довыпаривание в условиях интенсивного теплообмена, соответствующего испарению с тонких пленок. Из зазора между средним 7 и внешним 6 цилиндрами слабый раствор через трубопровод 12 попадает в зазор между корпусом 1 и кожухом 11 теплообменника, откуда посредством штуцера 13 вывода слабого раствора выводится в абсорбер 3.
Верхний конец паропровода 8 выведен в паровую полость зазора между внешним 6 и средним 7 цилиндрами, т.е. выше уровня слабого раствора ▽б, поэтому такое выполнение агрегата гарантирует, что слабый раствор не попадет в паропровод 8.
За счет избыточного давления пар хладагента отжимает крепкий раствор на уровне ▽в в паропроводе 8 и поступает в подъемную трубу 9 парлифтного насоса. При этом образуется двухфазная смесь, которая по подъемной трубе 9 подается в паровую полость корпуса 1, где происходит разделение крепкого раствора и паров хладагента. Через штуцер 2 пары хладагента из корпуса 1 и поступают в конденсатор (на чертеже не показан).
После выхода крепкого раствора из подъемной трубы 9 парлифтного насоса он стекает по нагретому внутреннему цилиндру 4 в зазор между внешним цилиндром 6 и корпусом 1 на уровень ▽a, в процессе чего происходит его нагрев и частичное выпаривание в условиях, близких к режиму испарения с тонких пленок. При движении крепкого раствора в зазоре между внешним цилиндром 6 и корпусом 1 происходит его предварительный нагрев за счет температурного потенциала слабого раствора в трехпоточном теплообменнике, образованном средним 7 и внешним 6 цилиндрами, трубопроводом 12, корпусом 1 и кожухом 11 теплообменника. Далее крепкий раствор по зазору между средним цилиндром 7 и паропроводом 8 поступает в зазор между средним 7 и внутренним 4 цилиндрами для выпаривания.
После сжижения в конденсаторе жидкий хладагент сливается в испаритель АДХА (не показан), в котором испаряется в циркулирующий водород, производя при этом холодильное действие. Богатая водоаммиачная смесь из испарителя поступает в емкость 10 и далее в абсорбер 3, где из нее слабым раствором поглощаются пары аммиака. При этом раствор становится крепким и накапливается в емкости 10, а практически чистый водород вновь поступает в испаритель АДХА. Крепкий раствор из емкости 10 через гидрозатвор подводится в нижнюю часть подъемной трубы 9 парлифтного насоса, который работает при помощи паров хладагента, и далее подается в верхнюю часть полости корпуса 1. После этого рабочий цикл предлагаемого агрегата повторяется.
Таким образом, достигаемый с помощью предлагаемого устройства технический результат обусловлен наличием в конструкции АДХА трехпоточного теплообменника между крепким и слабым растворами, что позволяет эффективно использовать температурный потенциал слабого раствора для предварительного нагрева крепкого раствора перед его выпариванием и тем самым уменьшить энергозатраты при производстве холода.
Сравнение предлагаемого устройства не только с прототипом, но и с другими техническими решениями в данной области техники, не позволило выявить в них признаки, отличающие предлагаемое устройство от прототипа.
Это дает основание признать предлагаемое решение соответствующим критериям изобретения.
Экономическая целесообразность использования предлагаемого АДХА в составе бытовых холодильников состоит в уменьшении их суточного энергопотребления за счет эффективной утилизации тепла.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент РФ 2031328, МПК: F 25 В 15/10, 1995 г.
2. Патент РФ 2038548, МПК: 6 F 25 В 15/10, 1995 г.

Claims (3)

1. Абсорбционно-диффузионный холодильный агрегат, содержащий корпус кипятильника со штуцером вывода паров хладагента, кожух теплообменника со штуцером вывода слабого раствора, абсорбер и три цилиндра, образующих между собой и корпусом кольцевые зазоры, причем внутренний цилиндр выполнен с заглушенным нижним торцом, герметично соединен с корпусом и в нем размещен электронагреватель, при этом верхний и нижний торцы внешнего цилиндра герметично соединены соответственно с внутренним и средним цилиндрами, а открытый верхний торец среднего цилиндра расположен с зазором относительно закрытого торца внешнего цилиндра, кроме того, в среднем цилиндре расположен паропровод, верхний конец которого выведен в паровую полость зазора между средним и внешним цилиндрами, а нижний подсоединен с образованием гидрозатвора к подъемной трубе парлифтного насоса, отличающийся тем, что кожух теплообменника установлен на корпусе с образованием зазора и его верхний и нижний торцы герметично соединены с корпусом, при этом жидкостные полости зазоров между средним и внешним цилиндрами, а также между корпусом и кожухом теплообменника соединены трубопроводом.
2. Адсорбционно-диффузионный холодильный агрегат по п.1, отличающийся тем, что верхний конец подъемной трубы парлифтного насоса выведен в паровую полость корпуса, а нижний подключен с образованием гидрозатвора к емкости абсорбера.
3. Адсорбционно-диффузионный холодильный агрегат по п.1, отличающийся тем, что верхняя часть зазора между корпусом и кожухом теплообменника связана посредством штуцера вывода слабого раствора с абсорбером.
RU2001103967/06A 2001-02-12 2001-02-12 Абсорбционно-диффузионный холодильный агрегат RU2207473C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001103967/06A RU2207473C2 (ru) 2001-02-12 2001-02-12 Абсорбционно-диффузионный холодильный агрегат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001103967/06A RU2207473C2 (ru) 2001-02-12 2001-02-12 Абсорбционно-диффузионный холодильный агрегат

Publications (2)

Publication Number Publication Date
RU2001103967A RU2001103967A (ru) 2003-01-27
RU2207473C2 true RU2207473C2 (ru) 2003-06-27

Family

ID=29209291

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001103967/06A RU2207473C2 (ru) 2001-02-12 2001-02-12 Абсорбционно-диффузионный холодильный агрегат

Country Status (1)

Country Link
RU (1) RU2207473C2 (ru)

Similar Documents

Publication Publication Date Title
CN202921003U (zh) 一种热泵式真空蒸发浓缩系统
CN101832681A (zh) 利用热泵回收热能的溴化锂制冷机
CN106196727B (zh) 一种热泵系统及其运行方法
CN100389294C (zh) 立式双侧降膜吸收器制取蒸汽的第二类溴化锂吸收式热泵
CN109701291A (zh) 一种基于热泵循环的双效低温蒸发浓缩碱液的循环系统
CN101701757B (zh) 壳管蒸发器
RU2207473C2 (ru) Абсорбционно-диффузионный холодильный агрегат
CN110513909A (zh) 一种蒸汽制冷余热回收系统及方法
CN109506392A (zh) 压缩式与吸收式耦合高温热泵机组
CN104548650A (zh) 一种连续蒸发结晶方法
CN211514026U (zh) 一种二级冷却器与二级加热器组合的空气加热干燥装置
RU2304263C1 (ru) Способ получения холода в абсорбционно-диффузионном холодильном агрегате
RU2352873C1 (ru) Способ получения холода в абсорбционно-диффузионном холодильном агрегате
RU2310801C1 (ru) Абсорбционно-диффузионный холодильный агрегат
RU2647731C1 (ru) Мобильный аппарат для дистилляции жидкости
RU2038548C1 (ru) Абсорбционно-диффузионный холодильный агрегат
RU2304262C1 (ru) Абсорбционно-диффузионный холодильный агрегат
RU2205336C2 (ru) Способ получения холода в абсорбционно-диффузионном холодильном агрегате и устройство для его осуществления (варианты)
RU2186303C2 (ru) Способ получения холода в абсорбционно-диффузионном холодильном агрегате
CN218130079U (zh) 一种用于植物提取的萃取装置
CN217464986U (zh) 一种内置多层换热管的载冷剂储存水箱
RU2079071C1 (ru) Способ получения холода в абсорбционно-диффузионном холодильном агрегате (варианты) и устройство для его осуществления (варианты)
RU2353867C1 (ru) Абсорбционно-диффузионный холодильный агрегат
RU2031328C1 (ru) Абсорбционно-диффузионный холодильный агрегат и способ его работы
CN211739543U (zh) 吸收式余热制冷机及其空压机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040213