RU2204183C1 - Водородно-кислородный (воздушный) топливный элемент-аккумулятор - Google Patents

Водородно-кислородный (воздушный) топливный элемент-аккумулятор Download PDF

Info

Publication number
RU2204183C1
RU2204183C1 RU2001132313/09A RU2001132313A RU2204183C1 RU 2204183 C1 RU2204183 C1 RU 2204183C1 RU 2001132313/09 A RU2001132313/09 A RU 2001132313/09A RU 2001132313 A RU2001132313 A RU 2001132313A RU 2204183 C1 RU2204183 C1 RU 2204183C1
Authority
RU
Russia
Prior art keywords
hydrogen
electrode
oxygen
air
vktea
Prior art date
Application number
RU2001132313/09A
Other languages
English (en)
Inventor
З.Р. Каричев
Original Assignee
Каричев Зия Рамизович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Каричев Зия Рамизович filed Critical Каричев Зия Рамизович
Priority to RU2001132313/09A priority Critical patent/RU2204183C1/ru
Application granted granted Critical
Publication of RU2204183C1 publication Critical patent/RU2204183C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

Изобретение относится к области электротехники, в частности к топливным элементам (ТЭ), используемым в энергоустановках различного назначения, например на транспортных средствах. Согласно изобретению водородно-кислородный (воздушный) топливный элемент-аккумулятор (ВКТЭА) содержит водородный газодиффузионный электрод с водородной камерой, кислородный (воздушный) газодиффузионный электрод с кислородной (воздушной) камерой и электролит, расположенный между водородным и кислородным (воздушным) электродами. При этом водородный электрод содержит металлогидридный сплав, между водородным и кислородным (воздушным) электродами расположен окисно-никелевый электрод, а в качестве электролита взят щелочной электролит. Окисно-никелевый электрод может быть отделен от водородного и кислородного (воздушного) электродов сепараторами. Окисно-никелевый электрод может быть выполнен с возможностью электрического подключения к кислородному (воздушному) электроду посредством переключателя. Окисно-никелевый электрод может иметь пористость в диапазоне от 60 до 80% при относительном сопротивлении по электролиту от 1,5 до 8. Металлогидридный сплав расположен на поверхности водородного электрода, обращенной к водородной камере, а зарядная емкость окисно-никелевого электрода согласована с зарядной емкостью по водороду металлогидридного сплава. Техническим результатом изобретения является создание ВКТЭА, обладающего высокими удельными характеристиками и ресурсом работы. 7 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области электротехники, в частности к топливным элементам (ТЭ), используемым в энергоустановках различного назначения, например на транспортных средствах.
Известны водородно-кислородные (воздушные) ТЭ, используемые на транспортных средствах в качестве источника энергии. Однако ТЭ не могут обеспечить пиковую мощность, потребляемую транспортным средством при маневрах, и рекуперацию энергии при торможении. Для обеспечения указанных требований используется накопитель энергии, например аккумулятор, подключаемый параллельно с ТЭ (см. патент США 5929594, кл. H 02 J 7/00, 1999). Наличие дополнительного аккумулятора ухудшает удельные характеристики установки.
Известен водородно-кислородный ТЭ - аккумулятор (ВКТЭА), представляющий собой ТЭ, совмещенный в одном корпусе с электролизером. ВКТЭА содержит водородный газодиффузионный электрод с водородной камерой, кислородный электрод с кислородной камерой, электролит, расположенный между электродами, и емкости для хранения водорода и кислорода (см. патент США 4839247, Н 01 М 8/18, 1989). Недостатком известного ВКТЭА являются низкие удельные электрические характеристики из-за наличия емкостей для хранения реагентов. Кроме того, указанный ВКТЭА обладает ограниченным ресурсом из-за плохой обратимости кислородного электрода при циклировании (см. В.С.Багоцкий и др. Химические источники тока. М.: Энергоиздат, 1981, с.255).
Известен ВКТЭА, содержащий водородную и кислородную камеры с соответствующими электродами, разделенными электролитом. Для обеспечения длительной работоспособности ВКТЭА содержит два типа электродов, одни из которых используются при заряде, а другие при разряде ВКТЭА (см. патент США 4074018, кл. Н 01 М 4/86, 1978). Недостатком рассматриваемого ВКТЭА является сложность конструкции из-за наличия двух типов электродов, размещенных в одном корпусе.
Из известных ВКТЭА наиболее близким по совокупности существенных признаков и достигаемому техническому результату является ВКТЭА, содержащий водородный газодиффузионный электрод с водородной камерой, воздушный газодиффузионный электрод с воздушной камерой, электролит, расположенный между водородным и воздушным электродами, и емкость для хранения водорода, заполненная металлогидридным сплавом (см. патент США 5510202, Н 01 М 8/06, 1996). Использование воздуха в качестве окислителя и металлогидрида в качестве накопителя водорода позволяет существенно повысить удельные характеристики ВКТЭА за счет исключения кислородной емкости и снижения рабочего давления в водородной емкости. Недостаток указанного известного ВКТЭА связан с низкой обратимостью воздушного электрода при циклировании, что приводит к снижению ресурса.
Задачей изобретения является создание ВКТЭА, обладающего высокими удельными характеристиками и ресурсом работы.
Указанный технический результат достигается тем, что ВКТЭА содержит водородный газодиффузионный электрод с водородной камерой, кислородный (воздушный) газодиффузионный электрод с кислородной (воздушной) камерой и электролит, расположенный между водородным и кислородным (воздушным) электродами. При этом водородный электрод содержит металлогидридный сплав, между водородным и кислородным (воздушным) электродами расположен окисно-никелевый электрод, а в качестве электролита взят щелочной электролит. Описанное выше конструктивное выполнение ВКТЭА позволяет функционально объединить и разместить в одном корпусе ТЭ и никель-металлогидридный аккумулятор. При этом ввиду высокой обратимости водородного электрода, он является общим для ТЭ и аккумулятора. Совмещение аккумулятора и ТЭ позволяет существенно повысить удельные характеристики и ресурс ВКТЭА.
Целесообразно, чтобы окисно-никелевый электрод был отделен от водородного и кислородного (воздушного) электродов сепараторами. Наличие сепараторов предотвращает возможность замыкания указанных электродов. Целесообразно, чтобы окисно-никелевый электрод был выполнен с возможностью электрического подключения к кислородному (воздушному) электроду, например, посредством переключателя. Возможность такого подключения посредством указанного переключателя позволяет отключать кислородный (воздушный) электрод при заряде аккумулятора и подключать его параллельно окисно-никелевому электроду при одновременном разряде ТЭ и аккумулятора.
Целесообразно, чтобы окисно-никелевый электрод имел пористость в диапазоне 60 - 80%, а его относительное сопротивление по электролиту составляет 1,5 - 8. Высокая пористость и малое относительное сопротивление по электролиту окисного никелевого электрода, расположенного между водородным и кислородным (воздушным) электродами ВКТЭА, не приведут к значительному увеличению внутреннего сопротивления ВКТЭА.
Целесообразно, чтобы металлогидридный сплав был расположен на поверхности водородного электрода, обращенной к водородной камере, а зарядная емкость окисно-никелевого электрода была согласована с зарядной емкостью по водороду метталлогидридного сплава. Размещение сплава на поверхности электрода, обращенной к водородной камере, облегчает сорбцию водорода, выделяющегося при заряде аккумулятора и десорбцию водорода при разряде аккумулятора. Согласование указанных емкостей обеспечивает оптимальность конструкции аккумулятора и ВКТЭА в целом.
Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию "новизна".
Для проверки соответствия заявленного изобретения критерию "изобретательский уровень" проведен дополнительный поиск известных технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. Установлено, что заявленное техническое решение не следует явным образом из известного уровня техники. Следовательно, заявленное изобретение соответствует критерию "изобретательский уровень".
Сущность изобретения поясняется чертежом и описанием конструкции заявленного ВКТЭА
На чертеже в разрезе представлен ВКТЭА. ВКТЭА включает водородный газодиффузионный электрод 1 с водородной камерой 2, кислородный (воздушный) газодиффузионный электрод 3 с кислородной (воздушной) камерой 4. Водородный электрод 1 на поверхности, обращенной к водородной камере, содержит металлогидридный сплав 5. Окисно-никелевый электрод 6 отделен от водородного 1 и кислородного (воздушного) 3 электродов сепараторами 8. Водородный электрод 1 и кислородный (воздушный) электрод 3 разделены щелочным электролитом 7. Кислородный (воздушный) электрод 3 через переключатель 9 соединен с окисно-никелевым электродом 6. При заряде (разряде) ВКТЭА внешний источник электрической энергии (нагрузка) подключен к электрическим выводам 10. При заряде переключатель 9 разомкнут, и происходит заряд аккумулятора с электродами 1 и 6. При разряде переключатель 9 замкнут, и происходит разряд аккумулятора с электродами 1, 6 и работа ТЭ с электродами 1, 3.
Сведения, подтверждающие возможность осуществления изобретения
Заявленный ВКТЭА работает следующим образом. В водородную полость 2 подают водород, в кислородную (воздушную) полость 4 подают кислород (воздух), переключатель 9 замкнут и ВКТЭА готов работать в режиме ТЭ. При необходимости заряда ВКТЭА переключатель 9 размыкается, к электрическим выводам 10 подключается внешний источник электроэнергии. В процессе заряда на водородном электроде 1 выделяется водород, который поглощается металлогидридным сплавом 5, на окисно-никелевом электроде протекает реакция заряда в соответствии с уравнением реакции: Ni(OH)2+OH--->NiOOH+Н2О+е. При разряде ВКТЭА происходит параллельная работа ТЭ и аккумулятора. При полном разряде аккумулятора генерирование электроэнергии обеспечивает ТЭ. Таким образом, в заявленном ВКТЭА в едином корпусе функционально совмещены ТЭ и металлогидридный аккумулятор, причем водородный электрод является общим и для ТЭ и для аккумулятора. На основании вышеизложенного можно сделать вывод, что заявленный ВКТЭА может быть реализован на практике с достижением заявленного технического результата, т.е. он соответствует критерию "промышленная применимость".

Claims (8)

1. Водородно-кислородный (воздушный) топливный элемент-аккумулятор (ВКТЭА), содержащий водородный газодиффузионный электрод с водородной камерой, кислородный (воздушный) газодиффузионный электрод с кислородной (воздушной) камерой и электролит, расположенный между водородным и кислородным (воздушным) электродами, отличающийся тем, что водородный электрод содержит металлогидридный сплав, между водородным и кислородным (воздушным) электродами расположен окисно-никелевый электрод, а в качестве электролита взят щелочной электролит.
2. ВКТЭА по п. 1, отличающийся тем, что окисно-никелевый электрод отделен от водородного и кислородного (воздушного) электродов сепараторами.
3. ВКТЭА по п. 1, отличающийся тем, что окисно-никелевый электрод выполнен с возможностью электрического подключения к кислородному (воздушному) электроду.
4. ВКТЭА по п. 3, отличающийся тем, что окисно-никелевый электрод электрически подключен к кислородному (воздушному) электроду посредством переключателя.
5. ВКТЭА по п. 1, отличающийся тем, что окисно-никелевый электрод имеет пористость в диапазоне 60-80%.
6. ВКТЭА по п. 1, отличающийся тем, что относительное сопротивление окисно-никелевого электрода по электролиту составляет от 1,5 до 8.
7. ВКТЭА по п. 1, отличающийся тем, что металлогидридный сплав расположен на поверхности водородного электрода, обращенной к водородной камере.
8. ВКТЭА по п. 1, отличающийся тем, что зарядная емкость окисно-никелевого электрода согласована с зарядной емкостью по водороду металлогидридного сплава.
RU2001132313/09A 2001-11-30 2001-11-30 Водородно-кислородный (воздушный) топливный элемент-аккумулятор RU2204183C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001132313/09A RU2204183C1 (ru) 2001-11-30 2001-11-30 Водородно-кислородный (воздушный) топливный элемент-аккумулятор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001132313/09A RU2204183C1 (ru) 2001-11-30 2001-11-30 Водородно-кислородный (воздушный) топливный элемент-аккумулятор

Publications (1)

Publication Number Publication Date
RU2204183C1 true RU2204183C1 (ru) 2003-05-10

Family

ID=20254532

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001132313/09A RU2204183C1 (ru) 2001-11-30 2001-11-30 Водородно-кислородный (воздушный) топливный элемент-аккумулятор

Country Status (1)

Country Link
RU (1) RU2204183C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998184B2 (en) 2003-08-07 2006-02-14 Texaco Ovonic Fuel Cell, Llc Hybrid fuel cell
WO2008033050A1 (en) 2006-09-12 2008-03-20 Mikhail Borisovich Shapot Sealed nickel-cadmium storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998184B2 (en) 2003-08-07 2006-02-14 Texaco Ovonic Fuel Cell, Llc Hybrid fuel cell
WO2008033050A1 (en) 2006-09-12 2008-03-20 Mikhail Borisovich Shapot Sealed nickel-cadmium storage battery

Similar Documents

Publication Publication Date Title
EP2833469B1 (en) Reversible fuel cell and reversible fuel cell system
Besenhard Handbook of battery materials
Wang et al. A lithium–air capacitor–battery based on a hybrid electrolyte
McDowall Conventional battery technologies-present and future
US9478836B2 (en) Metal/air battery with electrochemical oxygen compression
WO2007075483A1 (en) Hybrid cell closed structure
Kopera Inside the Nickel metal hydride battery
JP2006128091A (ja) 二次電池
Tarabay et al. Nickel Metal Hydride battery: Structure, chemical reaction, and circuit model
JP3349321B2 (ja) 組電池
JP5594744B2 (ja) リバーシブル燃料電池
KR100189808B1 (ko) 권취 극판군
Folonari et al. Metal hydride fuel cells: A feasibility study and perspectives for vehicular applications
RU2204183C1 (ru) Водородно-кислородный (воздушный) топливный элемент-аккумулятор
KR100210502B1 (ko) 권취극판군용 세퍼레이터
US3546020A (en) Regenerable fuel cell
CN116868430A (zh) 电池单体、电池、用电装置、制造方法及制造设备
JP4044372B2 (ja) 液体燃料電池
Kopera et al. Considerations for the utilization of NiMH battery technology in stationary applications
JP2013077434A (ja) リチウム空気キャパシター電池
RU2254643C1 (ru) Батарея водородно-кислородных (воздушных) щелочных топливных элементов
KR100790563B1 (ko) 대용량 니켈/수소저장합금 이차전지의 극판군 구조
US3560260A (en) Method of eliminating gas pressure in batteries by using gas in fuel cell
RU2168810C2 (ru) Герметичный никель-кадмиевый аккумулятор
Lee et al. Overview of electrochemical energy sources for electric vehicles

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20080415

PC41 Official registration of the transfer of exclusive right

Effective date: 20120712

MM4A The patent is invalid due to non-payment of fees

Effective date: 20131201