RU2203132C1 - Реактор для окисления нефтепродуктов - Google Patents
Реактор для окисления нефтепродуктов Download PDFInfo
- Publication number
- RU2203132C1 RU2203132C1 RU2001131504A RU2001131504A RU2203132C1 RU 2203132 C1 RU2203132 C1 RU 2203132C1 RU 2001131504 A RU2001131504 A RU 2001131504A RU 2001131504 A RU2001131504 A RU 2001131504A RU 2203132 C1 RU2203132 C1 RU 2203132C1
- Authority
- RU
- Russia
- Prior art keywords
- reactor
- ejector
- raw materials
- air
- oxidation
- Prior art date
Links
Images
Landscapes
- Working-Up Tar And Pitch (AREA)
Abstract
Реактор для окисления нефтепродуктов относится к газожидкостным реакторам и может быть использован в нефтехимической промышленности. Реактор состоит из вертикального цилиндрического корпуса, оснащенного трубопроводами ввода сырья и воздуха. В верхней части реактора соосно с корпусом установлен эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе. Диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья в реакторе. В нижней части реактора также соосно с корпусом установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель. Данная конструкция реактора обеспечивает получение битумов заданного качества при увеличении производительности реактора по сырью наряду со снижением удельного расхода подаваемого на окисление воздуха и повышением эффективности его использования. 3 ил.
Description
Изобретение относится к газожидкостным реакторам непрерывного действия с противоточным движением фаз. Предлагаемое устройство может также использоваться в качестве тепло-и массообменного аппарата при непосредственном контакте с жидкой и газовой (или паровой) фазами. Особенно эффективно его применение в процессе окисления нефтепродуктов кислородом воздуха при получении окисленных битумов из гудронов, экстрактов селективной очистки масел, асфальтов процесса деасфальтизации гудронов и их смесей.
Известен реактор для получения окисленных битумов, в котором для интенсификации процесса применяется струйная техника - инжекторные насосы (А.С. 1781284 СССР, 1992).
Недостатком данного устройства является то, что попытка решения поставленной задачи осуществляется только за счет развития поверхности взаимодействия фаз. Кроме этого, процесс окисления сырья в реакторе производится в периодическом режиме.
За прототип изобретения принят газожидкостной реактор (Пат. 1806002 СССР, 1993), в котором повышение эффективности процесса достигается за счет усиления межфазного взаимодействия и увеличения времени контакта фаз путем применения кавитационно-вихревой аппаратуры.
Недостатком этого реактора является то, что внедрение предлагаемого технического решения решает вопрос развития поверхности контакта фаз и интенсификации их перемешивания в ограниченной зоне реакторного объема. Кроме этого, подача, сырья и воздуха практически в одну точку лишает колонный реактор одного из своих главных преимуществ - противотока сырья и газовоздушного потока в масштабе всего аппарата (вне зависимости от места установки кавитационно-вихревого устройства).
Цель изобретения - получение битумов заданного качества при увеличении производительности реактора по сырью наряду со снижением удельного расхода подаваемого на окисление воздуха и повышением эффективности его использования - сокращением содержания кислорода в газах окисления.
Поставленная цель достигается тем, что в верхней части реактора, представляющего собой вертикальный цилиндрический корпус, оснащенный трубопроводами ввода сырья и воздуха, соосно c корпусом устанавливается эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе, тогда как диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья. В нижней части реактора также соосно с корпусом установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель.
На фиг. 1 схематично изображен реактор; на фиг.2, 3 показаны узлы ввода сырья и воздуха через соответствующие эжекторы, а также основные потоки газа и жидкости в зоне их установки. На фиг.2 и 3 направление движения основных потоков газа и жидкости показаны соответственно стрелками с пунктирными и сплошными линиями.
В верхней части цилиндрического корпуса 1 реактора соосно установлен эжектор ввода сырья, состоящий из приемной камеры 2, камеры смешения 3, диффузора 4 и рабочего сопла 5, соединенного с внешней линией подачи сырья трубопроводом 6. К приемной камере 2 присоединен патрубок 7, выходящий в пространство над уровнем сырья в реакторе. Диффузор 4, к которому крепится отбойник 8, погружен в сырье.
Эжектор ввода воздуха находится в нижней части реактора и также установлен соосно с корпусом 1. Эжектор состоит из приемной камеры 9, камеры смешения 10, диффузора 11 и рабочего сопла 12, соединенного с внешней линией подачи воздуха трубопроводом 13.
Принцип работы реактора, основой которого является применение струйной техники - эжеторов, заключается в следующем.
Непрерывно подаваемые в реактор сырье 14 и воздух 15 попадают через соответствующие эжекторы в верхнюю и нижнюю части корпуса 1. Между зонами установки эжекторов сырье и диспергированный воздух совершают противоточное движение. Образовавшиеся в процессе реакции газы окисления 16 после достижения уровня сырья в реакторе покидают реакционное пространство и отводятся из аппарата. Битум 17, полученный в процессе окисления сырья кислородом воздуха, откачивают из нижней части реактора.
Сырье 14, поступающее с высокой скоростью через сопло 5 в сужающуюся часть приемной камеры 2 эжектора ввода сырья, создает в полости этой камеры разрежение. В результате по патрубку 7, соединяющему эжектор с частью реактора, не заполняемой сырьем, эжектируются газы окисления, содержащие не прореагировавший кислород.
Процесс разрушения рабочей струи - потока сырья, попадающего из сопла 5 в эжектор, происходит следующим образом. Струя сырья в газовой среде (потоке эжектируемого газа) разрушается в результате того, что капли выпадают из ядра струи. Разрушение струи начинается с появления ряби (волн) на ее поверхности на расстоянии нескольких диаметров от среза сопла. Затем амплитуда волн растет до тех пор, пока капли или частицы жидкости не начнут выпадать в окружающий газовый поток.
По мере развития процесса ядро струи уменьшается и, в конце концов, исчезает. Расстояние, на котором происходит разрушение струи, считается зоной перемешивания, в которой сплошной средой является эжектируемый газ. Камера смешения в этой зоне заполнена газожидкой эмульсией (пеной). После скачкообразного повышения давления в следующей зоне камеры смешения сплошной средой становится жидкость, в которой распределены пузырьки газа. Образующаяся газожидкая смесь в виде высокоскоростного потока из диффузора поступает на отражатель 8.
Эжектирование части газов окисления струей входящего в реактор сырья приводит к тому, что этот газовый поток, содержащий не прореагировавший кислород, снова попадает в реакционное пространство аппарата, повышая эффективность использования применяемого воздуха, о чем можно судить по снижению концентрации кислорода в газах окисления 16.
Этому способствует также увеличение поверхности контакта газовой и жидкой фаз в камере смешения эжектора - переход смеси сырья и эжектируемых газов от состояния пены к потоку жидкости, включающей пузырьки газа с высокой степенью их дисперсности.
Кроме того, достигается интенсификация перемешивания в верхней части реактора. Объем эжектируемых газов окисления значительно превосходит объем поступающего сырья и образующийся суммарный газожидкий поток, выходящий из диффузора 4 с большой скоростью, отражателем 8 направляется к периферии поперечного сечения корпуса реактора, смешиваясь с восходящим газовоздушным потоком из нижней части аппарата. Часть сырья, увлекаемого вверх потоком эжектируемых газов окисления, образует циркулирующий поток среды в верхней зоне реактора. В сочетании с интенсификацией перемешивания это способствует более полному окислению сырьевого потока в этой зоне.
Воздух 15, поступающий с высокой скоростью через сопло 12 в сужающуюся часть приемной камеры 9 эжектора подачи воздуха, создает в полости этой камеры разрежение. В результате часть сырьевого потока с газовоздушной смесью, находящейся в этой зоне, эжектируются в приемную камеру 9. Образующаяся газожидкая смесь через смеситель 10 и диффузор 11 в виде высокоскоростного потока подается на отражатель 18, распределяющий ее по поперечному сечению реактора. Высокая степень диспергирования подаваемого воздуха, перемешивание струями отраженного потока и восходящим газовоздушным потоком, многократная циркуляция воздуха, увлекаемого в эжектор в составе газожидкой смеси, обеспечивают интенсификацию процесса окисления в зоне подачи в реактор воздуха.
Таким образом, использование энергии входящих в реактор потоков за счет применения струйной техники - эжекторов позволяет повысить степень диспергирования фаз в реакционном объеме, интенсифицировать процесс перемешивания в зонах, подачи сырья и воздуха, а также создать циркуляционные потоки в этих зонах, обеспечивая многократное контактирование реагирующих фаз. При этом в основном объеме аппарата сохранено противоточное движение сырья и воздуха.
Внедрение промышленного реактора предлагаемой конструкции позволило при получении дорожных битумов заданного качества повысить производительность аппарата по сырью на 30% наряду со снижением удельного расхода воздуха (в расчете на одну тонну сырья) на 37% и повышением эффективности его использования - сокращением содержания кислорода в газах окисления.
Кроме этого, изменение гидродинамического и температурного режимов в аппарате, а также более равномерное распределение газовоздушного потока в реакционном объеме приводит к предотвращению получения переокисленных компонентов - возможности получения битума повышенного качества за счет улучшения его эксплуатационных характеристик.
Claims (1)
- Реактор для окисления нефтепродуктов, состоящий из вертикального цилиндрического корпуса, оснащенного трубопроводами ввода сырья и воздуха, отличающийся тем, что в верхней части реактора соосно корпусу установлен эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе, при этом диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья в реакторе, а в нижней части реактора также соосно корпусу установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001131504A RU2203132C1 (ru) | 2001-11-21 | 2001-11-21 | Реактор для окисления нефтепродуктов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001131504A RU2203132C1 (ru) | 2001-11-21 | 2001-11-21 | Реактор для окисления нефтепродуктов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2203132C1 true RU2203132C1 (ru) | 2003-04-27 |
Family
ID=20254413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001131504A RU2203132C1 (ru) | 2001-11-21 | 2001-11-21 | Реактор для окисления нефтепродуктов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2203132C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006889A1 (fr) * | 2004-07-06 | 2006-01-19 | Research & Design Institute Of Urea And Organic Synthesis Products, Joint Stock Company (Oao Niic) | Reacteur liquide-gaz |
US7871509B2 (en) | 2004-07-23 | 2011-01-18 | John Brodie Matthews | Process and apparatus for modifying bitumen |
WO2012011844A1 (ru) * | 2010-07-21 | 2012-01-26 | Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) | Газожидкостный реактор (варианты) |
US9447327B2 (en) | 2010-11-29 | 2016-09-20 | Exxonmobil Research And Engineering Company | Asphalt oxidation process using liquid jet ejection |
-
2001
- 2001-11-21 RU RU2001131504A patent/RU2203132C1/ru active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006889A1 (fr) * | 2004-07-06 | 2006-01-19 | Research & Design Institute Of Urea And Organic Synthesis Products, Joint Stock Company (Oao Niic) | Reacteur liquide-gaz |
US7871509B2 (en) | 2004-07-23 | 2011-01-18 | John Brodie Matthews | Process and apparatus for modifying bitumen |
WO2012011844A1 (ru) * | 2010-07-21 | 2012-01-26 | Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) | Газожидкостный реактор (варианты) |
EP2596859A4 (en) * | 2010-07-21 | 2017-08-16 | Otkrytoe Aktsionernoe Obschestvo Research & Design Institute Of Urea And Organic Synthesis Products (OAO NIIK) | Gas-liquid reactor (variant embodiments) |
US9447327B2 (en) | 2010-11-29 | 2016-09-20 | Exxonmobil Research And Engineering Company | Asphalt oxidation process using liquid jet ejection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3833719A (en) | Method and apparatus for mixing gas and liquid | |
US4162970A (en) | Injectors and their use in gassing liquids | |
US4834343A (en) | Gas liquid contacting method | |
US4101286A (en) | Bubble forming device having no moving parts | |
EP0323646A2 (en) | Method of separating a higher vapor pressure component and/or particulate matter from a lower vapor pressure component | |
US4328107A (en) | Process and apparatus for forming dispersions | |
WO2012011844A1 (ru) | Газожидкостный реактор (варианты) | |
RU2203132C1 (ru) | Реактор для окисления нефтепродуктов | |
WO1981001700A1 (en) | Method and apparatus for dissolving gas in a liquid | |
CA2056418A1 (en) | Apparatus and method for sparging a gas into a liquid | |
US10603643B2 (en) | Process and device for dispersing gas in a liquid | |
US4840751A (en) | Process for contacting gases with liquids | |
WO2000027514A1 (en) | Ejector for entraining a gas into a liquid | |
US10589237B2 (en) | Systems and methods for gas disposal | |
US4786414A (en) | Gas dispersed packed extraction column | |
US6238912B1 (en) | Method and apparatus for contacting gas and liquid | |
CA1144889A (en) | Use of a gasification device in photochemical gas-liquid reactions | |
GB2222098A (en) | Improvements in and relating to contacting of plural distinct fluid phases | |
JPH10225696A (ja) | 加圧式オゾン処理装置 | |
EP3195923B1 (en) | Systems and methods for gas disposal | |
CN109225116B (zh) | 一种筛孔喷嘴压差式撞击流反应器 | |
RU104552U1 (ru) | Реактор для окисления нефтепродуктов | |
RU154250U1 (ru) | Реактор для окисления нефтепродуктов | |
US5190733A (en) | High interfacial area multiphase reactor | |
JPS61145131A (ja) | 不均一系物質輪送制限反応を実施する方法および装置 |