RU2201800C2 - Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов - Google Patents

Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов Download PDF

Info

Publication number
RU2201800C2
RU2201800C2 RU99124178/12A RU99124178A RU2201800C2 RU 2201800 C2 RU2201800 C2 RU 2201800C2 RU 99124178/12 A RU99124178/12 A RU 99124178/12A RU 99124178 A RU99124178 A RU 99124178A RU 2201800 C2 RU2201800 C2 RU 2201800C2
Authority
RU
Russia
Prior art keywords
riser
suspension
liquid
gaseous
area
Prior art date
Application number
RU99124178/12A
Other languages
English (en)
Other versions
RU99124178A (ru
Inventor
Андрэ Питер СТЕЙНБЕРГ
Герман Герардас НЭЛ
Рой В. СИЛВЕРМАН
Original Assignee
Сэсол Текнолоджи (Проприетери) Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэсол Текнолоджи (Проприетери) Лимитед filed Critical Сэсол Текнолоджи (Проприетери) Лимитед
Publication of RU99124178A publication Critical patent/RU99124178A/ru
Application granted granted Critical
Publication of RU2201800C2 publication Critical patent/RU2201800C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/226Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • C07C1/063Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons the organic compound being the catalyst or a part of the catalyst system
    • C07C1/066Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons the organic compound being the catalyst or a part of the catalyst system used for dissolving, suspending or transporting the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/0007Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00725Mathematical modelling
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

Изобретение имеет отношение к созданию способа получения жидких и, опционно, газообразных продуктов из газообразных реагентов. Изобретение также связано с созданием установки для получения жидких и, возможно, газообразных продуктов из газообразных реагентов. Способ получения жидких и/или газообразных продуктов из газообразных реагентов предусматривает подачу на низком уровне газообразных реагентов в слой взвеси твердых частиц, взвешенных в жидкости суспензии; создание возможности протекания реакции для газообразных реагентов при их прохождении вверх через слой взвеси, в результате чего образуются жидкие и газообразные продукты, причем газообразные реагенты и любой газообразный продукт содействуют поддержанию твердых частиц по взвешенном состоянии в жидкости суспензии. Жидкий продукт образует совместно с жидкостью суспензии жидкостную фазу слоя взвеси. Любой газообразный продукт и не вступившие в реакцию газообразные реагенты освобождаются из слоя взвеси в свободное пространство над слоем взвеси. Взвесь проходит вниз в слое взвеси через стояки, расположенные в первой и второй областях размещения стояков в слое взвеси, в результате чего происходит перераспределение твердых частиц в объеме слоя взвеси. Вторая область размещения стояка смещена по вертикали относительно первой области размещения стояка. Любой газообразный продукт и не вступившие в реакцию газообразные реагенты отводятся из указанного свободного пространства, а жидкостная фаза отводится из слоя взвеси. Преимущественно имеет место синтез Фишера-Тропша, когда газообразные реагенты имеют вид потока газа синтеза, образованного главным образом моноксидом углерода и водородом. Изобретение позволяет повысить эффективность процессов, имеющих широкое применение. 2 с. и 17 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение имеет отношение к созданию способа получения жидких и, опционно, газообразных продуктов из газообразных реагентов. Настоящее изобретение также связано с созданием установки для получения жидких и, опционно, газообразных продуктов из газообразных реагентов.
В соответствии с первым аспектом настоящего изобретения предлагается способ получения жидких и, опционно, газообразных продуктов из газообразных реагентов, причем указанный способ включает в себя следующие операции:
подача на низком уровне газообразных реагентов в слой взвеси твердых частиц, взвешенных в жидкости суспензии;
создание возможности протекания реакции для газообразных реагентов при их прохождении вверх через слой взвеси, в результате чего образуются жидкие и, опционно, газообразные продукты, причем газообразные реагенты и любой газообразный продукт содействуют поддержанию твердых частиц во взвешенном состоянии в жидкости суспензии, при этом жидкий продукт образует совместно с жидкостью суспензии жидкостную фазу слоя взвеси;
создание возможности для любого газообразного продукта и не вступивших в реакцию газообразных реагентов освобождаться из слоя взвеси в свободное пространство над слоем взвеси;
создание возможности для взвеси проходить вниз от высокого уровня в слое взвеси к более низкому уровню, по меньшей мере, через один стояк, расположенный в первой области размещения стояка слоя взвеси, а также, по меньшей мере, через один дополнительный стояк, расположенный во второй области размещения стояка слоя взвеси, причем вторая область размещения стояка смещена по вертикали относительно указанной первой области, в результате чего происходит перераспределение твердых частиц в объеме слоя взвеси;
отвод любого газообразного продукта и не вступивших в реакцию газообразных реагентов из указанного свободного пространства; и
отвод жидкостной фазы из слоя взвеси для поддержания слоя взвеси на желательном уровне.
Несмотря на то что можно полагать, что предлагаемый способ, по меньшей мере в принципе, может найти широкое применение, предусматривается, что твердые частицы нормально являются частицами катализатора для ускорения реакции газообразных реагентов с жидким и, если это применимо, с газообразным продуктом; причем жидкость суспензии обычно, но не обязательно является жидким продуктом.
Слой взвеси может находиться или может быть предусмотрен в зоне реакции реактора взвеси (шламового реактора) или барботажной колонны. При пропускании или рециркуляции некоторого объема взвеси через стояки получают более равномерное распределение катализатора в слое взвеси, чем в случае без стояков. Таким образом, в реакторе взвеси или в барботажной колонне использована трехфазная система, то есть система, которую образуют частицы твердого катализатора, жидкий продукт и газообразные реагенты, а также, возможно, газообразный продукт.
Более того, несмотря на то что можно полагать, что предлагаемый способ, по меньшей мере в принципе, может найти широкое применение, предусматривается, что он найдет специфическое применение при синтезе углеводородов, когда газообразные реагенты способны вступать в реакцию каталитически в слое взвеси с образованием жидкого углеводородного продукта и, опционно, газообразного углеводородного продукта. В частности, синтез углеводородов может представлять собой синтез Фишера-Тропша, когда газообразные реагенты имеют вид потока газа синтеза, образованного главным образом моноксидом углерода и водородом, причем в результате синтеза получают как жидкие, так и газообразные продукты.
Реакция синтеза Фишера-Тропша является высокоэкзотермической и заявитель неожиданно обнаружил, что более равномерное распределение теплоты достигается за счет рециркуляции части взвеси через стояки в первой и второй вертикально смещенных областях размещения стояков в соответствии с настоящим изобретением.
В качестве материала частиц катализатора может быть использован любой желательный катализатор Фишера-Тропша, такой как катализатор на основе железа, катализатор на основе кобальта, катализатор на основе железа и кобальта или любой иной катализатор Фишера-Тропша. Частицы катализатора могут иметь желательный диапазон размеров, например частицы катализатора могут иметь размер не более 300 мкм, причем менее 5% (по массе) частиц катализатора имеют размер менее 22 мкм.
В реакторе взвеси или в барботажной колонне поддерживают обычное повышенное давление и температуру, необходимые для протекания реакции Фишера-Тропша, например заданное рабочее давление в диапазоне от 10 до 50 бар и заданную температуру в диапазоне от 160 до 280oС, или даже выше, для получения продукта с более низкой температурой (точкой) кипения.
Частицы катализатора в слое взвеси поддерживаются во взвешенном состоянии за счет турбулентности, создаваемой потоком газа синтеза, проходящим через указанный слой, то есть при барботаже (газа) через слой взвеси. Выбирают скорость проходящего через слой взвеси газа достаточно высокой, чтобы поддерживать слой взвеси в состоянии турбулентности или во взвешенном состоянии.
В соответствии со вторым аспектом настоящего изобретения предлагается установка для получения жидких и, опционно, газообразных продуктов из газообразных реагентов, причем эта установка включает в себя:
реактор, в котором предусмотрена зона слоя взвеси, в которой при работе имеется слой твердых частиц, находящихся во взвешенном состоянии в жидкости суспензии;
впуск газа в реакторе на низком уровне в зоне слоя взвеси, предназначенный для ввода газообразных реагентов в реактор;
выпуск газа в реакторе над зоной слоя взвеси, предназначенный для вывода не вступивших в реакцию газообразных реагентов и, если они есть, газообразных продуктов из реактора;
по меньшей мере, один стояк, расположенный в первой области размещения стояка зоны слоя взвеси, через который взвесь может проходить в направлении вниз;
по меньшей мере, один дополнительный стояк, расположенный во второй области размещения стояка зоны слоя взвеси, смещенной вертикально относительно указанной первой зоны, через который взвесь также может проходить в направлении вниз; и
выпуск жидкости в реакторе в зоне слоя взвеси, предназначенный для вывода жидкого продукта из реактора.
Таким образом, стояки расположены на разных уровнях или при разном смещении по вертикали в слое взвеси или в зоне слоя взвеси. Указанная вторая область размещения стояка может быть расположена на более высоком уровне, чем первая область размещения стояка, причем по желанию могут быть предусмотрены дополнительные области, в каждой из которых имеется, по меньшей мере, один стояк или отводящая труба, при этом такие области расположены над указанной второй областью, причем третья и любая последующая область размещения стояков смещены вертикально друг от друга.
В соответствии с первым вариантом осуществления настоящего изобретения вторая область размещения стояка может перекрывать первую область размещения стояка. Другими словами, нижний конец (концы) стояка (стояков) во второй области может перекрывать вертикально верхний конец (концы) стояка (стояков) в первой области размещения стояка. Однако в соответствии с другим вариантом осуществления настоящего изобретения указанная вторая область может не перекрывать первую область. Вторая область размещения стояка расположена с отсутствием перекрытия первой области. Другими словами, нижний конец (концы) стояка (стояков) во второй области может иметь вертикальное смещение (зазор) от верхнего конца (концов) стояка (стояков) в первой области размещения стояка.
Стояк (стояки) во второй области могут быть расположены в шахматном порядке, смещен (смещены) в плане по отношению к стояку (стоякам) в первой области, если смотреть на реактор сверху. Другими словами, нижний конец (концы) стояка (стояков) во второй области преимущественно не служат для непосредственной разгрузки взвеси над верхним концом (концами) стояка (стояков) в первой области.
Каждый стояк может содержать нижнюю секцию транспортирования и верхнюю секцию освобождения или дегазации с большим поперечным сечением, чем в секции транспортирования. Указанные секции преимущественно имеют цилиндрическую форму и кольцевое поперечное сечение, причем сция освобождения соединена с секцией транспортирования при помощи расширяющегося наружу вверх соединительного компонента (патрубка). Однако по желанию сция освобождения может иметь и другую подходящую форму, например с прямоугольным или треугольным каналом, в зависимости от свободного пространства, имеющегося в реакторе.
Способ предусматривает обеспечение работы реактора взвеси таким образом, что слой взвеси находится в неоднородном или ксантотурбулентном ("сбивание масла") режиме течения и содержит разбавленную фазу, образованную быстро поднимающимися большими пузырьками газообразных реагентов и, возможно, газообразного продукта, причем эти пузырьки проходят зону реакции или слой взвеси фактически в пробковом (поршневом) режиме потока, а также содержит плотную фазу, то есть жидкий продукт, твердые частицы катализатора и увлеченные небольшие пузырьки газообразных реагентов и, возможно, газообразный продукт.
Секция освобождения или дегазации каждого стояка может быть устроена таким образом, чтобы позволить большей части газовых пузырьков, превышающих заданный размер, например пузырьков с диаметром ориентировочно 3 мм или больше, улетучиваться из ожиженной взвеси, которая поступает в стояк. Для этого диаметр секции дегазации может быть выбран таким образом, чтобы течение взвеси в направлении вниз в секции дегазации происходило медленнее, чем поднимаются вверх пузырьки заданного размера, например 3 мм. Площадь поперечного сечения секции дегазации каждого стояка в соответствующей области расположения стояка может составлять от 2 до 50%, а предпочтительно, от 6 до 25% площади поперечного сечения зоны реакции в области расположения стояка. Вертикальная высота секции дегазации может быть такой, чтобы позволить пузырькам с размером больше заданного иметь достаточное время для подъема и выхода из секции дегазации. Эта высота типично составляет от 0,23 до 0,61 м, а преимущественно составляет от 0, 31 до 0, 51 м.
Секция транспортирования каждого стояка служит для перемещения дегазированной взвеси в нижнюю точку реактора. Течение взвеси через стояк вызывается разностью плотностей частично или полностью дегазированной взвеси в секции транспортирования стояка и псевдоожиженной (аэрированной) взвеси вне стояка. При условии, что эффективное дегазирование "разбавленной" газовой фазы имеет место в секции дегазации, длина и внутренний диаметр секции транспортирования становятся основными характеристиками стояка, определяющими скорость потока (расход) взвеси, достижимую в стояке при определенном наборе рабочих условий. Это вызвано тем фактом, что длина и внутренний диаметр секции транспортирования определяют потери на трение стояка. Обеспечиваемая в стояке скорость потока представляет собой баланс между плотностной силой приведения в действие (создания потока) (вызванной указанной разностью плотностей) и потерями на трение в секции транспортирования, а также потерями давления за счет эффектов при входе в секцию транспортирования и выходе из нее. Эффекты входа и выхода являются функцией только диаметра секции транспортирования.
Скорость потока взвеси в стояке не должна превышать ориентировочно 5 м/с, чтобы предотвратить как эрозию трубы стояка, так и физическую деградацию катализатора во взвеси. Скорость потока взвеси внутри стояка может составлять от 0,5 м/с до 10 м/с, а преимущественно от 2 м/с до 5 м/с. Минимальную скорость потока взвеси в стояке устанавливают таким образом, чтобы направленная вверх поверхностная скорость жидкости в зоне реакции реактора была достаточной для предотвращения существенного осаждения катализатора, то есть для поддержания слоя взвеси в состоянии турбулентности или во взвешенном состоянии, как упоминалось ранее. Направленная вверх поверхностная скорость жидкости вне стояка может составлять от 0,5 см/с до 10 см/с, а преимущественно от 2 см/с до 4 см/с.
Полная длина секции транспортирования стояка может составлять от 0,3 до 30 м, а преимущественно от 4 до 15 м.
В то время как нормально каждый стояк расположен полностью в слое взвеси, то есть внутри реактора, с секцией дегазации, типично совмещенной по оси с секцией транспортирования, вместо этого секция транспортирования и, опционно, часть секции дегазации могут быть расположены вне реактора, однако таким образом, что конец нижнего выпуска секции транспортирования и по меньшей мере конец верхнего впуска секции дегазации при этом остаются локализованными внутри реактора в слое взвеси или в зоне слоя взвеси.
В реакторе с относительно большой площадью поперечного сечения несколько стояков размещают в каждой из указанных областей в различных местах поперечного сечения реактора для достижения требуемой направленной вверх поверхностной скорости жидкости без превышения указанной ранее максимальной внутренней скорости потока. Аналогично в относительно длинном реакторе несколько более коротких стояков может быть использовано в более чем двух областях размещения стояков, которые смещены вертикально по длине реактора.
Положения выпусков на дне стояков могут быть выбраны таким образом, чтобы свести к минимуму соударение дегазированной взвеси со стенкой реактора или с его внутренними элементами. Такое соударение с течением времени может приводить к эрозии или к физической деградации катализатора. Положения выпусков стояка относительно впуска газа, который типично соединен с распределительной системой разбрызгивателя (барботера), должны быть выбраны таким образом, чтобы не было вредного влияния на равномерное распределение газа в слое взвеси.
Следует избегать осаждения катализатора в стояках. Поэтому углы секций стояка или его компонентов, в особенности соединительных компонентов, не должны превышать угол естественного откоса взвеси.
Указанные ранее и другие характеристики изобретения будут более ясны из последующего детального описания, данного в качестве примера, не имеющего ограничительного характера и приведенного со ссылкой на сопроводительные чертежи.
На фиг.1 приведено продольное сечение установки в соответствии с первым аспектом настоящего изобретения, предназначенной для получения жидких и газообразных продуктов из газообразных реагентов.
На фиг.2 приведено продольное сечение установки в соответствии со вторым аспектом настоящего изобретения, предназначенной для получения жидких и газообразных продуктов из газообразных реагентов.
Обратимся теперь к рассмотрению фиг.1, на которой позицией 10 показана в общем виде установка в соответствии с первым аспектом настоящего изобретения, предназначенная для получения жидких и газообразных продуктов из газообразных реагентов.
Установка 10 включает в себя прямой цилиндрический реактор взвеси или барботажную колонну 12 с впуском газа 14, ведущим в газовый распределитель (не показан) внутри реактора, и с выпуском газа 16, идущим от верхней части реактора. Выпуски жидкого продукта 18 могут быть предусмотрены в реакторе 12 на любом необходимом уровне.
Реактор 12 включает в себя первую область размещения стояка, обозначенную позицией 20. Область 20 содержит стояк, обозначенный в общем виде позицией 22. Стояк 22 содержит цилиндрическую секцию транспортирования 24 относительно малого диаметра, расширяющийся наружу соединительный компонент 26 у верхнего конца секции транспортирования 24, а также секцию дегазации большего диаметра 28, нижний конец которой соединен с соединительным компонентом 26. Таким образом, верхний конец секции дегазации 28 представляет собой впуск для взвеси, в то время как нижний конец секции транспортирования 24 представляет собой выпуск взвеси. В области стояка 20 предусмотрен также охлаждающий змеевик 29.
Реактор 12 также включает в себя вторую область размещения стояка, обозначенную в общем виде позицией 30. Область 30 содержит стояк, обозначенный в общем виде позицией 32. Стояк 32 также содержит цилиндрическую секцию транспортирования 34 относительно малого диаметра, расширяющийся наружу соединительный компонент 36 у верхнего конца секции транспортирования 34 и секцию дегазации большего диаметра 38 у верхнего конца секции транспортирования 34. Нижний конец секции дегазации 38 соединен с соединительным компонентом 36. Верхний конец секции дегазации 38 представляет собой впуск для взвеси, в то время как нижний конец секции транспортирования 34 представляет собой выпуск взвеси. В области стояка 30 предусмотрен также охлаждающий змеевик 39.
Нижний конец стояка 32 смещен с вертикальным зазором относительно верхнего конца стояка 22. Более того, стояк 32 не совмещен по оси со стояком 22. Другими словами, стояк 32 сдвинут (в сторону) относительно стояка 22, если смотреть на реактор 12 сверху.
Обратимся теперь к рассмотрению фиг.2, на которой позицией 100 обозначена в общем виде установка в соответствии со вторым аспектом настоящего изобретения, предназначенная для получения жидких и газообразных продуктов из газообразных реагентов.
Узлы установки 100, которые являются такими же или аналогичными показанным на фиг.1, имеют одинаковые позиционные обозначения.
Реактор 12 установки 100 главным образом соответствует реактору 12 установки 10, за исключением того, что нижний конец стояка 32 перекрывает вертикально верхний конец стояка 22.
При работе установки фиг.1 и 2 подают газ синтеза, который в основном включает в себя моноксид углерода и водород в качестве газообразных реагентов, к основанию реактора 12 через газовый впуск 14, причем газ обычно равномерно распределяется внутри реактора при помощи разбрызгивающей системы (не показана). Газообразные реагенты проходят вверх через слой взвеси 40, который содержит частицы катализатора Фишера-Тропша, причем обычно используют взвесь катализатора на основе железа или кобальта в жидком продукте. Слой взвеси должен иметь нормальный уровень 42, расположенный выше области второго стояка 30, а также свободное пространство 44 над слоем взвеси. При барботаже газа синтеза через слой взвеси его газообразные реагенты вступают в реакцию каталитически с образованием жидкого продукта, который при этом образует часть слоя взвеси 40. Время от времени или непрерывно через выпуск 18 удаляют жидкостную фазу, содержащую жидкий продукт, причем частицы катализатора отделяют от жидкого продукта при помощи соответствующей внутренней системы фильтрации (не показана). Альтернативно система фильтрации может быть расположена снаружи от реактора и в этом случае соединена с дополнительной системой (не показана), предназначенной для возврата отделенных частиц катализатора в реактор.
Некоторый объем взвеси непрерывно проходит в направлении вниз через стояки 32, 22, в результате чего достигается однородное перераспределение частиц катализатора внутри слоя взвеси 40, а также обеспечивается равномерное распределение теплоты по всему объему слоя взвеси, что далее описано более подробно.
Реактор 12 работает таким образом, что его слой взвеси 40 находится в неоднородном (гетерогенном) или ксантотурбулентном ("сбивание масла") режиме течения и содержит разбавленную фазу, образованную быстро поднимающимися большими пузырьками газообразных реагентов и газообразного продукта, причем эти пузырьки проходят слой взвеси фактически в пробковом (поршневом) режиме потока, а также содержит плотную фазу, которая включает в себя жидкий продукт, твердые частицы катализатора и увлеченные небольшие пузырьки газообразных реагентов и газообразный продукт.
Плотная фаза даже при отсутствии стояков 32, 22 имеет существенную степень обратного перемешивания. Эксперименты с динамическим освобождением газа могут быть использованы для определения газовой пустотности (объема, свободного от газа, gas voidage) в разбавленной и плотной фазах. Газовая пустотность в плотной фазе практически не зависит от диаметра реакторной колонны. С другой стороны, газовая пустотность в разбавленной фазе уменьшается при увеличении диаметра реактора 12.
Заявитель установил, что зависимость газовой пустотности в разбавленной фазе от диаметра реакторной колонны ограничена диаметрами колонны меньше максимального диаметра порядка 0,5 м. Например, практически одинаковые газовая пустотность или газовый захват были получены для реакторов с диаметрами от 0,87 до 5,0 м.
Из экспериментов с динамическим освобождением газа, таких как описанные в книге Van Vuuren, D.S. "Hydrodynamic studies on slurry bubble column", CSIR, CENER 8840 (1988), неясно, каким образом следует проектировать секции дегазации 38, 28 соответствующих стояков 32, 22, чтобы произвести дегазирование существенной пропорции небольших газовых пузырьков плотной фазы. Однако в секциях дегазации легко отделяются большие газовые пузырьки плотной фазы, обычно имеющие диаметр более ориентировочно 3 мм.
Объем, свободный от газа в секциях транспортирования 34, 24 стояков 32, 22, представляет газовую пустотность в плотной фазе, которая может быть определена при помощи экспериментов по разрушению (колапсу) слоя взвеси. В конкретных экспериментах, которые были проведены на опытной установке Works Pilot Plant, удалось получить (вывести) газовую пустотность по результатам измерения падения давления в секции транспортирования стояка. Полученные результаты подтверждают, что газовая пустотность в стояке не зависит от скорости газа в реакторе. Газовая пустотность плотной фазы является функцией свойств рабочего тела и концентрации катализатора. Отсутствуют надежные расчетные методы получения газовой пустотности плотной фазы и этот параметр следует определять экспериментально, например так, как это было описано выше. Значения газовой пустотности плотной фазы в проведенных тестах лежали в диапазоне от 0, 25 до 0, 35, а типично это значение составляло 0,3.
Был предложен приемлемый вычислительный метод определения проектного значения скорости взвеси в секции транспортирования. При учете эффектов входа и выхода и потерь на трение о стенку (в стояке) было получено следующее выражение:
Figure 00000002

в котором
α = (-2gh)/[β2-2,32-(f′h/dd)], (2)
β = dd/de (3)
причем u - скорость взвеси, м/с,
ρB - плотность газированного слоя взвеси, кг/м3;
g - гравитационная постоянная, м/с2;
ΔP - измеренная разность давлений опытной установки, кПа;
L - расстояние между штуцерами для измерения давления опытной установки, м;
f - коэффициент трения о стенку трубы (стояка);
dd - диаметр секции транспортирования стока, м;
de - диаметр секции освобождения стояка, м;
h - длина стояка, м.
Полученные результаты были признаны аппроксимацией, которая является достаточно точной для надежного проектирования, если вычисленная скорость преимущественно лежит в диапазоне от 2 м/с до 5 м/с. Для оптимизации проекта и нахождения места расположения стояков может быть использована более продвинутая техника вычислений, такая как техника расчетного динамического моделирования рабочего тела (жидкости или газа) (CFD).
При использовании расположения стояков на различной высоте может быть уменьшена степень обратного перемешивания газа плотной фазы, в результате чего улучшаются характеристики преобразования (конверсии) реактора. Можно полагать, что обратное перемешивание небольших пузырьков снаружи от стояка не имеет существенного значения, так как существует быстрый массоперенос между газом и фазой взвеси для таких небольших пузырьков. Это было подтверждено экспериментами с газовым индикатором с использованием реактора диаметром 0,87 м, которые показали, что при отсутствии стояков газовый поток через слой взвеси реактора главным образом имеет пробковый (поршневой) режим потока, при числах Пекле (Peclet), превышающих 20, для поверхностных скоростей газа в диапазоне от 13 до 60 см/с. Однако они (стояки) могут способствовать существенному обратному перемешиванию газа из областей, близких к выходной концентрации, с газом из областей, близких к входной концентрации. Этот эффект может быть уменьшен за счет использования стояков, установленных на разной высоте.
ПРИМЕР 1
В реактор с фазой взвеси Фишера-Тропша с внутренним диаметром 0,87 м и высотой слоя взвеси 18 м был введен стояк, имеющий полную длину 14,7 м, внутренний диаметр секции освобождения 0,354 м и внутренний диаметр секции транспортирования 0,102 м. Разность давлений ΔР 33,35 кПа была измерена при помощи штуцеров для измерения давления, установленных на расстоянии 6 м друг от друга вдоль стояка. Объемная плотность реактора составляла 470 кг/м3. Если принять коэффициент трения о стенку 0,02, то можно получить следующие значения.
Для выражения (3):
β=0, 289.
Для выражения (2):
α=56, 42.
Затем была вычислена с использованием выражения (1) направленная вниз скорость взвеси в секции транспортирования стояка, которая составила 4, 24 м/с. Эта скорость ниже верхнего предпочтительного предела скорости 5 м/с. Таким образом, расчет стояка позволяет использовать его в качестве стояка 22 или 32 в установке 10, 100 в соответствии с настоящим изобретением.
ПРИМЕР 2
В реактор с фазой взвеси Фишера-Тропша с внутренним диаметром 0,87 м и высотой слоя взвеси 18 м были введены два стояка 32 и 22, имеющие полную длину 7 м и 8,3 м соответственно. Оба стояка имели секции освобождения с внутренним диаметром 0,354 м и секции транспортирования с внутренним диаметром 0,102 м. Два стояка имели перекрытие 1 м, при этом конфигурация реактора соответствовала показанной на фиг.2.
Разность давлений ΔР 35,7 кПа была измерена при помощи штуцеров для измерения давления, установленных на расстоянии 6 м друг от друга вдоль стояка 32. Объемная плотность реактора составляла 470 кг/м3. Если принять коэффициент трения о стенку 0,02, то можно получить следующие значения.
Для выражения (3):
β=0,289.
Для выражения (2):
α=38, 05.
Затем была вычислена с использованием выражения (1) направленная вниз скорость взвеси в секции транспортирования стояка 32, которая составила 3,49 м/с. Эта скорость ниже верхнего предпочтительного предела скорости 5 м/с.
Разность давлений ΔР 35,2 кПа была измерена при помощи штуцеров для измерения давления, установленных на расстоянии 6 м друг от друга вдоль стояка 22. Объемная плотность реактора составляла 470 кг/м3. Если принять коэффициент трения о стенку 0,02, то можно получить следующие значения.
Для выражения (3):
β=0,289.
Для выражения (2):
α=42,14.
Затем была вычислена с использованием выражения (1) направленная вниз скорость взвеси в секции транспортирования стояка 22, которая составила 3,67 м/с. Эта скорость ниже верхнего предпочтительного предела скорости 5 м/с.
Установки 10, 100 годятся для проведения в высшей степени экзотермических трехфазных каталитических реакций, в особенности реакций Фишера-Тропша. За счет применения стояков 22, 32, которые являются неограниченными, например не имеют отражательных перегородок у нижних концов своих секций транспортирования, может быть получено однородное перераспределение катализатора во взвеси реактора и, следовательно, обеспечено более эффективное использование катализатора.
Реакторы с фазой взвеси, такие как реакторы Фишера-Тропша, обеспечивают улучшенные характеристики теплопередачи для экзотермических реакций в результате барботажа газа в реакторе, позволяющего поддерживать частицы катализатора во взвешенном состоянии. Змеевики теплопереноса внутри реактора также поглощают теплоту, выделяемую за счет экзотермической реакции. Однако представляет проблему обеспечение однородного распределения теплоты в слое взвеси реакторов, которые используют для органического синтеза, предусматривающего проведение реакции Фишера-Тропша с очень активным порошковым катализатором, таким как кобальт, за счет чего реакция становится еще более экзотермической.
Заявитель удивительным образом обнаружил, что использование стояков 22, 32, установленных на различных уровнях, содействует разрешению проблемы однородного распределения теплоты для таких высокоэкзотермических реакторов. Использование установленных на различных уровнях стояков в соответствии с настоящим изобретением приводит к одинаковому значению температуры (с отклонением в пределах 5oС) для всей фазы взвеси при использовании коммерческого реактора взвеси любого диаметра.
Использование стояка для перераспределения теплоты создает, как уже упоминалось, дополнительное преимущество, заключающееся в том, что происходит однородное перераспределение порошкового катализатора, однако недостатком такого решения является обратный поток газа в виде небольших пузырьков, идущий от впуска у верхней части стояка до выпуска у его основания. Однако заявитель также неожиданно обнаружил, что за счет выбора конкретного выполнения стояка в соответствии с настоящим изобретением этот недостаток может быть, по меньшей мере, уменьшен, что приводит к более эффективной работе реактора со слоем взвеси. При проведении экспериментов с газовым индикатором были получены значения чисел Пекле более 3 для установки 100 (как это показано в примере 2) в диапазоне поверхностных скоростей газа от 15 до 30 см/с при рабочем давлении 20 бар. Настоящее изобретение позволяет также устранить и другие известные недостатки реакторов со слоем взвеси, даже при использовании известной конфигурации с единственным стояком, такие как:
i) В реакторах со слоем взвеси, оборудованных известным образом единственным стояком, возникают высокие температуры на дне реактора со слоем взвеси, в том случае, когда уровень (высота) слоя взвеси падает ниже верхней части стояка; этого можно избежать за счет использования нескольких стояков в соответствии с настоящим изобретением, так как такие высокие температуры не возникают при падении уровня взвеси 42 ниже верхнего конца или верхней части стояка 32 во второй области размещения стояка 30; и
ii) высокие скорости взвеси в секциях транспортирования стояка, которые в противном случае могли бы приводить к эрозии стояка и/ или к износу катализатора, по меньшей мере, могут быть уменьшены за счет использования стояков в смещенных друг от друга вертикально областях размещения стояков в соответствии с настоящим изобретением.

Claims (19)

1. Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов, включающий следующие операции: подача на низком уровне газообразных реагентов в слой взвеси твердых частиц, взвешенных в суспензии; создание возможности протекания реакции для газообразных реагентов при их прохождении вверх через слой взвеси для образования жидких и, возможно, газообразных продуктов; создание возможности для любого газообразного продукта и не вступивших в реакцию газообразных реагентов освобождаться из слоя взвеси в свободное пространство над слоем взвеси; создание возможности для прохождения взвеси твердых частиц в жидкости от высокого уровня в слое взвеси к более низкому уровню; отвод любого газообразного продукта и не вступивших в реакцию газообразных реагентов из указанного свободного пространства; отвод жидкостной фазы из слоя взвеси, отличающийся тем, что протекание реакции осуществляют с возможностью содействия поддержанию твердых частиц во взвешенном состоянии в жидкой суспензии газообразными реагентами и любыми газообразными продуктами, при этом жидкий продукт образует совместно с жидкостью суспензии жидкостную фазу слоя взвеси, создание возможности для взвеси проходить вниз от высокого уровня в слое взвеси к более низкому уровню осуществляют по меньшей мере через один стояк, расположенный в первой области размещения стояка слоя взвеси, а также по меньшей мере через один дополнительный стояк, расположенный во второй области размещения стояка слоя взвеси, причем первая и вторая области размещения стояков смещены по вертикали, а отвод жидкой фазы из слоя взвеси осуществляют для поддержания слоя взвеси на уровне, расположенном выше области второго стояка.
2. Способ по п. 1, отличающийся тем, что твердые частицы представляют собой частицы катализатора для ускорения реакции газообразных реагентов с жидким и, возможно, с газообразным продуктом, причем жидкость суспензии представляет собой жидкий продукт, а в зоне реакции реактора взвеси или в барботажной колонне использована трехфазная система, которую образуют частицы твердого катализатора, жидкий продукт и газообразные реагенты, а также, возможно, газообразный продукт.
3. Способ по п.2, отличающийся тем, что газообразные реагенты способны вступать в реакцию каталитически в слое взвеси с образованием жидкого углеводородного продукта и газообразного углеводородного продукта за счет синтеза Фишера-Тропша, когда газообразные реагенты имеют вид потока газа синтеза, образованного главным образом моноксидом углерода и водородом.
4. Способ по п.3, отличающийся тем, что катализатором является катализатор Фишера-Тропша на основе железа, катализатор Фишера-Тропша на основе кобальта или катализатор Фишера-Тропша на основе железа и кобальта, причем частицы катализатора могут иметь размер не более 300 мкм, причем менее 5% по массе частиц катализатора имеют размер менее 22 мкм.
5. Способ по п.3 или 4, отличающийся тем, что каждый стояк содержит нижнюю секцию транспортирования и верхнюю секцию освобождения с большим поперечным сечением, чем в секции транспортирования, причем секция освобождения соединена с секцией транспортирования при помощи расширяющегося наружу вверх соединительного компонента.
6. Способ по п.5, отличающийся тем, что указанный способ предусматривает обеспечение работы реактора взвеси таким образом, что слой взвеси находится в неоднородном или ксантотурбулентном режиме течения и содержит разбавленную фазу, образованную быстро поднимающимися большими пузырьками газообразных реагентов и газообразного продукта, причем эти пузырьки проходят зону реакции или слой взвеси в пробковом режиме потока, а также содержит плотную фазу, которая включает в себя жидкий продукт, твердые частицы катализатора, увлеченные небольшие пузырьки газообразных реагентов и газообразный продукт.
7. Способ по п. 6, отличающийся тем, что секция освобождения каждого стояка выполнена таким образом, чтобы позволить большей части газовых пузырьков с диаметром более 3 мм улетучиваться из ожиженной взвеси, которая поступает в стояк, причем для этого диаметр секции дегазации выбран таким образом, что взвесь протекает в направлении вниз в секции дегазации медленнее, чем поднимаются вверх пузырьки размером 3 мм.
8. Способ по п.7, отличающийся тем, что площадь поперечного сечения секции освобождения каждого стояка в соответствующей области расположения стояка составляет 2 - 50% площади поперечного сечения зоны реакции в области расположения стояка, причем вертикальная высота секции освобождения составляет 0,23 - 0,61 м, что позволяет пузырькам с размером 3 мм иметь достаточное время для подъема и выхода из секции освобождения.
9. Способ по одному из пп.5-8, отличающийся тем, что скорость потока взвеси в стояке не превышает 5 м/с, чтобы предотвратить как эрозию трубы стояка, так и физическую деградацию катализатора во взвеси.
10. Способ по п.9, отличающийся тем, что скорость потока взвеси внутри стояка составляет 2 - 5 м/с.
11. Способ по одному из пп.5-10, отличающийся тем, что направленная вверх поверхностная скорость жидкости вне стояка составляет 2 - 4 см/с.
12. Установка для получения жидких и, возможно, газообразных продуктов из газообразных реагентов, содержащая реактор, в котором предусмотрена зона слоя взвеси, в которой при работе имеется слой твердых частиц, находящихся во взвешенном состоянии в жидкости суспензии, впуск газа в реакторе на низком уровне слоя взвеси, предназначенный для ввода газообразных реагентов в реактор, по меньшей мере один стояк, расположенный в зоне слоя взвеси, через который взвесь может проходить в направлении вниз, выпуск газа в реакторе над зоной слоя взвеси, предназначенный для вывода не вступивших в реакцию газообразных реагентов и, если он есть, газообразного продукта из реактора, по меньшей мере один стояк, расположенный в зоне слоя взвеси, через который взвесь может проходить в направлении вниз, выпуск жидкости в реакторе в зоне слоя взвеси, предназначенный для вывода жидкого продукта из реактора, отличающаяся тем, что содержит по меньшей мере один стояк, расположенный в первой области размещения стояков в зоне взвеси, через который взвесь может проходить в направлении вниз, по меньшей мере один дополнительный стояк, расположенный во второй области размещения стояка в зоне слоя взвеси, через который взвесь также может проходить в направлении вниз, причем первая и вторая области размещения смещены по вертикали.
13. Установка по п.12, отличающаяся тем, что вторая область размещения стояка расположена на более высоком уровне, чем первая область размещения стояка, причем дополнительные области, в каждой из которых имеется по меньшей мере один стояк или отводящая труба, расположены над указанной второй областью, при этом третья и любая последующая область размещения стояков также смещены вертикально друг от друга.
14. Установка по п.13, отличающаяся тем, что вторая область размещения стояка перекрывает первую область размещения стояка таким образом, что нижний конец стояка во второй области размещения стояка перекрывает вертикально верхний конец стояка в первой области размещения стояка.
15. Установка по п.13, отличающаяся тем, что вторая область размещения стояка расположена с отсутствием перекрытия первой области размещения стояка таким образом, что нижний конец стояка во второй области имеет вертикальное смещение от верхнего конца стояка в первой области размещения стояка.
16. Установка по п.14 или 15, отличающаяся тем, что стояк во второй области размещения стояка смещен в плане по отношению к стояку или стоякам в первой области таким образом, что нижний конец стояка во второй области размещения стояка не служит для непосредственной разгрузки взвеси над верхним концом стояка в первой области размещения стояка.
17. Установка по одному из пп.12-16, отличающаяся тем, что каждый стояк содержит нижнюю секцию транспортирования и верхнюю секцию освобождения с большим поперечным сечением, чем в секции транспортирования, причем секция освобождения соединена с секцией транспортирования при помощи расширяющегося наружу вверх соединительного компонента.
18. Установка по п.17, отличающаяся тем, что площадь поперечного сечения секции освобождения каждого стояка в соответствующей области расположения стояка составляет 2 - 50% площади поперечного сечения зоны реакции в области расположения стояка, причем вертикальная высота секции освобождения составляет 0,23 - 0,61м.
19. Установка по любому из пп.12-18, отличающаяся тем, что в каждой области размещения предусмотрено несколько стояков.
RU99124178/12A 1997-07-15 1998-07-14 Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов RU2201800C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA976254 1997-07-15
ZA97/6254 1997-07-15

Publications (2)

Publication Number Publication Date
RU99124178A RU99124178A (ru) 2001-10-20
RU2201800C2 true RU2201800C2 (ru) 2003-04-10

Family

ID=25586480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99124178/12A RU2201800C2 (ru) 1997-07-15 1998-07-14 Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов

Country Status (16)

Country Link
US (1) US6201031B1 (ru)
EP (1) EP0998346B1 (ru)
JP (1) JP4203129B2 (ru)
AR (1) AR015404A1 (ru)
AT (1) ATE206070T1 (ru)
AU (1) AU730075B2 (ru)
CA (1) CA2293659C (ru)
DE (1) DE69801826T2 (ru)
DK (1) DK0998346T3 (ru)
ES (1) ES2162460T3 (ru)
MY (1) MY115757A (ru)
NO (1) NO319808B1 (ru)
PE (1) PE115199A1 (ru)
RU (1) RU2201800C2 (ru)
WO (1) WO1999003574A1 (ru)
ZA (1) ZA985992B (ru)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038774C (en) 1990-04-04 2001-09-25 Eric Herbolzheimer Slurry bubble column
EG22489A (en) * 1999-02-05 2003-02-26 Sasol Technology Process for producing liquid and optionally gaseous products from gaseous reactants
FR2806736B1 (fr) 2000-03-27 2002-05-10 Inst Francais Du Petrole Procede de production d'hydrocarbures a partir de gaz de synthese dans un reacteur triphasique
US6762209B1 (en) 2001-08-31 2004-07-13 University Of Kentucky Research Foundation Bubble column apparatus for separating wax from catalyst slurry
FR2832416B1 (fr) * 2001-11-20 2004-09-03 Inst Francais Du Petrole Procede de conversion de gaz de synthese dans des reacteurs en serie
US7022741B2 (en) * 2003-03-28 2006-04-04 Conocophillips Company Gas agitated multiphase catalytic reactor with reduced backmixing
US20040235968A1 (en) * 2003-03-28 2004-11-25 Conocophillips Company Process and apparatus for controlling flow in a multiphase reactor
DE602004015984D1 (de) * 2003-05-16 2008-10-02 Sasol Tech Pty Ltd Verfahren zur herstellung von flüssigen und gegebenenfalls gasförmigen produkten aus gasförmigen reaktanten
JP4731553B2 (ja) * 2004-05-10 2011-07-27 サソール テクノロジー(プロプライエタリー)リミテッド 膨張するスラリー床内への気体の反応物質からの液体のまた任意に気体の炭化水素の生成
FR2877950B1 (fr) 2004-11-17 2006-12-29 Inst Francais Du Petrole Dispositif de production d'hydrocarbures liquides par synthese fischer-tropsch dans un reacteur a lit triphasique
CN101396647B (zh) * 2007-09-29 2011-03-16 中科合成油技术有限公司 用于费-托合成的气-液-固三相悬浮床反应器及其应用
KR100992835B1 (ko) * 2008-02-29 2010-11-08 한국화학연구원 피셔-트롭쉬 합성반응용 고체촉매와 생성물의 연속분리배출장치 및 방법
NL2007359C2 (en) 2010-09-07 2012-06-05 Sasol Tech Pty Ltd Diesel engine efficiency improvement.
JP5990389B2 (ja) * 2012-03-26 2016-09-14 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素油の製造方法、気泡塔型スラリー床反応装置及び炭化水素油の製造システム
WO2014075112A2 (en) 2012-10-30 2014-05-15 Sasol Technology (Pty) Ltd Diesel fuel composition
JP2014136767A (ja) * 2013-01-17 2014-07-28 Japan Oil Gas & Metals National Corp 炭化水素合成反応装置
CN103962069B (zh) * 2013-01-31 2017-03-08 中国科学院上海高等研究院 一种浆态床反应器
CN103962067B (zh) * 2013-01-31 2017-02-08 中国科学院上海高等研究院 一种用来进行浆态床反应的方法
CN113877488B (zh) * 2021-11-16 2023-07-04 中国石油大学(华东) 一种基于管式微孔介质发泡机理的上流式加氢反应装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124518A (en) * 1964-03-10 Product
JPS565572B1 (ru) * 1970-12-30 1981-02-05
JPS6490030A (en) * 1987-10-01 1989-04-05 Mitsubishi Heavy Ind Ltd Three-phase fluidized reactor
US5382748A (en) * 1992-12-18 1995-01-17 Exxon Research & Engineering Co. Hydrocarbon synthesis reactor employing vertical downcomer with gas disengaging means
US5962537A (en) * 1997-05-06 1999-10-05 Exxon Research And Engineering Co Multizone downcomer for slurry hydrocarbon syntheses process

Also Published As

Publication number Publication date
AU8349198A (en) 1999-02-10
EP0998346A1 (en) 2000-05-10
PE115199A1 (es) 1999-12-03
WO1999003574A1 (en) 1999-01-28
AR015404A1 (es) 2001-05-02
DE69801826T2 (de) 2002-03-28
CA2293659A1 (en) 1999-01-28
US6201031B1 (en) 2001-03-13
JP4203129B2 (ja) 2008-12-24
EP0998346B1 (en) 2001-09-26
NO20000190D0 (no) 2000-01-14
ATE206070T1 (de) 2001-10-15
AU730075B2 (en) 2001-02-22
DK0998346T3 (da) 2002-01-28
CA2293659C (en) 2006-09-05
JP2002510246A (ja) 2002-04-02
MY115757A (en) 2003-08-30
NO319808B1 (no) 2005-09-19
DE69801826D1 (de) 2001-10-31
ES2162460T3 (es) 2001-12-16
NO20000190L (no) 2000-03-01
ZA985992B (en) 2000-01-10

Similar Documents

Publication Publication Date Title
RU2201800C2 (ru) Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов
US10322393B2 (en) Slurry phase apparatus
JP4731553B2 (ja) 膨張するスラリー床内への気体の反応物質からの液体のまた任意に気体の炭化水素の生成
NL2000030C2 (nl) Werkwijze voor het bedienen van een gefluïdiseerd-bedreactor en gefluïdiseerd-bedreactor.
RU99124178A (ru) Способ получения жидких и, возможно, газообразных продуктов из газообразных реагентов
EP0428796B1 (en) Liquid degaser in an ebullated bed process
US20080299022A1 (en) Process for producing liquid and, optionally, gaseous products from gaseous reactants
WO2007086610A1 (en) Bubble column type hydrocarbon synthesis reactor
NL2000031C2 (nl) Produktie van vloeibare en, eventueel, gasvormige producten uit gasvormige reactanten.
RU2384603C1 (ru) Реакционная система с взвешенным слоем типа барботажной колонны для синтеза фишера-тропша
US4810359A (en) Gas-liquid separation in an ebullated bed process
US9080108B2 (en) Process for producing at least one product from at least one gaseous reactant in a slurry bed
US7060228B2 (en) Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase
US20060182673A1 (en) Apparatus for heterogeneous catalysed reactions
US5098552A (en) Controlling foam circulation in an ebullated bed process
EP1720645B1 (en) Downcomers for slurry bubble column reactors
JPS60147228A (ja) 三相流動反応装置