RU2198772C1 - Plasmotron - Google Patents

Plasmotron Download PDF

Info

Publication number
RU2198772C1
RU2198772C1 RU2001114559A RU2001114559A RU2198772C1 RU 2198772 C1 RU2198772 C1 RU 2198772C1 RU 2001114559 A RU2001114559 A RU 2001114559A RU 2001114559 A RU2001114559 A RU 2001114559A RU 2198772 C1 RU2198772 C1 RU 2198772C1
Authority
RU
Russia
Prior art keywords
housing
electrode
plasma
casing
channels
Prior art date
Application number
RU2001114559A
Other languages
Russian (ru)
Inventor
Ю.Д. Щицын
В.Ю. Щицын
Original Assignee
Пермский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пермский государственный технический университет filed Critical Пермский государственный технический университет
Priority to RU2001114559A priority Critical patent/RU2198772C1/en
Application granted granted Critical
Publication of RU2198772C1 publication Critical patent/RU2198772C1/en

Links

Images

Abstract

FIELD: plasma working of metals, namely plasma surfacing, welding, cutting ferrous and non-ferrous metals. SUBSTANCE: plasma generation and protection nozzles 3, 4 respectively are provided in housing 1. Ducts 5 for supplying plasma generating gas are arranged in casing 2. Duct 6 is designed for supplying protecting gas. Front and rear insulation sleeves 7, 8 respectively are mounted in cavity of housing 1. Hollow electrode 9 is arranged in sleeves 7, 8. Front and rear insulation sleeves 10, 11 are mounted on housing 1; casing 2 is placed onto said sleeves. Plasmotron has system for common cooling housing 1, electrode 9, plasma generation nozzle 3 and casing 2. Cooling system includes pipeline 12, annular ducts 14, 15, 16 arranged respectively between housing 1 and electrode 9, between electrode 9 and pipeline 12, between housing 1 and casing 2; duct 17 in electrode 9 mutually connecting annular ducts 14 and 15; ducts 18 in housing 1 mutually connecting annular ducts 14 and 16; discharging duct 13 in housing 1. EFFECT: enhanced reliability of plasmotron due to improved efficiency of cooling and elimination of double arc forming. 2 dwg

Description

Изобретение относится к области плазменной обработки металлов, а именно к устройствам для плазменной наплавки, сварки, резки черных и цветных металлов. The invention relates to the field of plasma processing of metals, and in particular to devices for plasma surfacing, welding, cutting of ferrous and non-ferrous metals.

Известны плазмотроны, содержащие полый корпус с плазмообразующим и защитным соплами, систему подвода плазмообразующего и защитного газов, электродный и электроизоляционный узлы и автономные системы охлаждения электродного узла и плазмообразующего сопла /патенты США 4058698, 4133987, МПК В 23 К 9/00/. Known plasmatrons containing a hollow body with a plasma-forming and protective nozzles, a system for supplying plasma-forming and protective gases, electrode and insulating assemblies and autonomous cooling systems of the electrode assembly and plasma-forming nozzles / US patents 4058698, 4133987, IPC 23 K 9/00 /.

Известные плазмотроны наряду с достаточно высокой мощностью имеют ряд недостатков: они содержат не менее 25-30 деталей сложной формы, требуют для своего изготовления применения операций пайки или сварки, габариты их достигают 200 мм по длине и 60-100 мм в поперечнике /по диаметру/, минимальная масса - 0,8-2,0 кг, срок службы не более 50-100 ч из-за выхода из строя теплонагруженных элементов: электрода и плазмообразующего сопла по причине низкой эффективности системы охлаждения. Кроме того, эти плазмотроны практически невозможно восстановить после отработки ресурса или аварийного выхода из строя из-за наличия сварных или паяных соединений. Known plasma torches along with a fairly high power have several disadvantages: they contain at least 25-30 parts of complex shape, require brazing or welding operations for their manufacture, their dimensions reach 200 mm in length and 60-100 mm in diameter / in diameter / , the minimum weight is 0.8-2.0 kg, the service life is not more than 50-100 hours due to failure of the heat-loaded elements: electrode and plasma nozzle due to the low efficiency of the cooling system. In addition, these plasmatrons are almost impossible to recover after working out a resource or an emergency failure due to the presence of welded or soldered joints.

Известен плазмотрон, содержащий полый цилиндрический электрод, корпус с закрепленными на нем плазмообразующим и защитным соплами и выполненными в нем каналами для подвода плазмообразующего и защитного газов и отвода охлаждающей жидкости, снабженный двумя изоляционными втулками, установленными между корпусом и электродом на противоположных концах корпуса, систему охлаждения с центральным и соосным с ним каналами, соединенными между собой и расположенными в электроде, кольцевым каналом, образованным наружной поверхностью электрода и внутренней поверхностью корпуса, соединенным с полостью электрода перепускными радиальными каналами, выполненными в электроде вблизи рабочего конца /патент РФ 2060130, МПК В 23 К 10/60/. Known plasma torch containing a hollow cylindrical electrode, a housing with a plasma-forming and protective nozzles mounted on it and channels made therein for supplying plasma-forming and protective gases and draining the coolant, equipped with two insulating sleeves installed between the housing and the electrode at opposite ends of the housing, a cooling system with a central and coaxial channel connected to each other and located in the electrode, an annular channel formed by the outer surface of the electrode and the inner surface of the housing connected to the electrode cavity bypass radial channels made in the electrode near the working end / RF patent 2060130, IPC 23 K 10/60 /.

Этот плазмотрон по сравнению с вышеописанными более прост по конструкции /имеет небольшое количество деталей простой конструкции/, имеет меньшие габариты и массу, более технологичен и удобен в эксплуатации, обладает высокой ремонтопригодностью /не имеет сварных и паяных соединений/. Однако имеются резервы для повышения мощности и надежности плазмотрона за счет повышения эффективности охлаждения. Кроме того, в описанном выше плазмотроне существует электрическая связь плазмообразующего и защитного сопел, что повышает возможность двойного дугообразования и аварийного режима при работе плазмотрона. Compared to the above, this plasmatron is simpler in design / has a small number of parts of simple construction /, has smaller dimensions and weight, is more technologically advanced and convenient to operate, has high maintainability / does not have welded and soldered joints /. However, there are reserves to increase the power and reliability of the plasma torch by increasing the cooling efficiency. In addition, in the plasmatron described above, there is an electrical connection between the plasma-forming and protective nozzles, which increases the possibility of double arcing and emergency operation during operation of the plasma torch.

Задача настоящего изобретения - повышение мощности и надежности плазмотрона за счет повышения эффективности охлаждения и исключения возможности двойного дугообразования. The objective of the present invention is to increase the power and reliability of the plasma torch by increasing the cooling efficiency and eliminating the possibility of double arcing.

Задача решается усовершенствованием известного плазмотрона. Предлагаемый плазмотрон содержит корпус, кожух, плазмообразующее и защитное сопла, выполненные в корпусе каналы для подвода плазмообразующего газа, выполненные в кожухе канал для подвода защитного газа и канал для отвода охлаждающей жидкости, установленные в полости корпуса переднюю и заднюю изоляционные втулки. Во втулках установлен полый электрод. На корпусе установлены передняя и задняя изоляционные втулки, на которые помещается кожух. Плазмотрон имеет единую систему охлаждения корпуса, электрода, плазмообразующего сопла и кожуха. Система охлаждения включает в себя трубопровод и кольцевые каналы: между корпусом и электродом, расположенный в осевом направлении между изоляционными втулками; электродом и трубопроводом; корпусом и кожухом, расположенный в осевом направлении между изоляционными втулками; перепускные радиальные каналы в электроде; соединяющие кольцевые каналы внутри электрода и корпуса; перепускные радиальные каналы в корпусе; соединяющие кольцевые каналы внутри корпуса и внутри кожуха и отводящий канал в кожухе. The problem is solved by improving the well-known plasmatron. The proposed plasmatron contains a housing, a casing, a plasma-forming and protective nozzle, channels for supplying a plasma-forming gas made in the housing, a channel for supplying a protective gas and a channel for draining coolant made in the casing, front and rear insulating sleeves installed in the housing cavity. A hollow electrode is installed in the bushings. The front and rear insulating sleeves, on which the casing is placed, are installed on the housing. The plasma torch has a single cooling system for the housing, electrode, plasma forming nozzle and casing. The cooling system includes a pipeline and annular channels: between the housing and the electrode, located in the axial direction between the insulating sleeves; electrode and pipeline; housing and casing, located in the axial direction between the insulating sleeves; radial bypass channels in the electrode; connecting annular channels inside the electrode and the housing; radial bypass channels in the housing; connecting the annular channels inside the housing and inside the casing and the outlet channel in the casing.

Предлагаемый плазмотрон отличается от плазмотрона по прототипу тем, что на корпусе установлены передняя и задняя изоляционные втулки, на которые помещается кожух. Между корпусом и кожухом расположен кольцевой канал, в осевом направлении ограниченный изоляционными втулками, этот канал соединен с системой охлаждения плазмотрона перепускными радиальными каналами, выполненными в корпусе, в передней его части. Перепускные каналы, выполненные в электроде, расположены в его хвостовой части. На кожухе закреплено защитное сопло, а в кожухе выполнены каналы для подвода защитного газа и отвода охлаждающей жидкости. The proposed plasmatron differs from the plasmatron by the prototype in that the front and rear insulating sleeves on which the casing is placed are mounted on the housing. An annular channel is located between the casing and the casing, axially bounded by insulating sleeves; this channel is connected to the plasma torch cooling system by radial bypass channels made in the casing in its front part. Bypass channels made in the electrode are located in its tail. A protective nozzle is fixed on the casing, and channels for supplying the protective gas and draining the coolant are made in the casing.

Наличие на внешней поверхности корпуса кольцевого канала системы охлаждения значительно увеличивает поверхность контакта корпуса с охлаждающей жидкостью, что повышает эффективность системы охлаждения. Расположение защитного сопла на кожухе, установленном на изолирующих втулках, обеспечивает изоляцию его от плазмообразующего сопла, что исключает возможность двойного дугообразования. The presence on the outer surface of the housing of the annular channel of the cooling system significantly increases the contact surface of the housing with the coolant, which increases the efficiency of the cooling system. The location of the protective nozzle on the casing mounted on the insulating sleeves ensures its isolation from the plasma-forming nozzle, which eliminates the possibility of double arcing.

На фиг.1 показан общий вид плазмотрона с продольным разрезом по системе подвода и отвода охлаждающей жидкости и системе подвода защитного газа. На фиг. 2 показан плазмотрон с продольным разрезом по системе подвода плазмообразующего газа и системе охлаждения (для повышения четкости чертежа отдельные детали показаны в увеличенном масштабе). Figure 1 shows a General view of the plasma torch with a longitudinal section through the system of supply and removal of coolant and the supply of protective gas. In FIG. 2 shows a plasma torch with a longitudinal section through a plasma gas supply system and a cooling system (to increase the clarity of the drawing, individual details are shown on an enlarged scale).

Плазмотрон содержит корпус 1, кожух 2, плазмообразующее 3 и защитное 4 сопла, выполненные в корпусе 1 каналы 5 для подвода плазмообразующего газа, выполненный в кожухе 2 канал 6 для подвода защитного газа, установленные в полости корпуса 1 переднюю 7 и заднюю 8 изоляционные втулки. Во втулке 7 головной своей частью "а" установлен полый электрод 9, задняя часть "b" которого (хвостовик) установлена во втулке 8. На корпусе 1 установлены передняя 10 и задняя 11 электроизоляционные втулки, на которые помещается кожух 2. Плазмотрон содержит также единую систему охлаждения корпуса 1, электрода 9, плазмообразующего сопла 3 и кожуха 2. Система охлаждения включает в себя расположенный по оси плазмотрона трубопровод 12 для подвода охлаждающей жидкости в полость "d" электрода 9 и выполненный в кожухе 2 канал 13 для отвода охлаждающей жидкости. Электрод 9 образует с корпусом 1, трубопроводом 12 и кожухом 2 кольцевые каналы 14, 15 и 16 соответственно. Кольцевые каналы 14 и 15 соединены радиальными каналами 17, выполненными в электроде 9 и расположенными в плоскости переднего конца задней электроизоляционной втулки 8. Кольцевые каналы 14 и 16 соединены радиальными каналами 18, выполненными в корпусе 1 и расположенными в плоскости заднего конца электроизоляционной втулки 10. Подвод воды осуществляется по каналу 19. Крепление электрода 9 и герметизация кольцевого канала 14 производится гайкой 20. Крепление кожуха 2 на корпусе 1 и герметизация кольцевого канала 16 осуществляется гайкой 21 через шайбу-изолятор 22. The plasma torch contains a housing 1, a casing 2, a plasma-forming 3 and a protective 4 nozzle, channels 5 for supplying a plasma-forming gas made in the housing 1, a channel 6 for supplying a protective gas made in the casing 2, frontal 7 and rear 8 insulating sleeves installed in the cavity of the body 1. In the sleeve 7, the hollow electrode 9 is installed with its head part “a”, the rear part “b” of which (the shank) is installed in the sleeve 8. On the housing 1, there are front 10 and rear 11 electrical insulating sleeves, on which the casing 2 is placed. The plasma torch also contains a single the cooling system of the housing 1, the electrode 9, the plasma-forming nozzle 3 and the casing 2. The cooling system includes a pipe 12 located on the axis of the plasma torch for supplying coolant to the cavity "d" of the electrode 9 and a channel 13 for discharging coolant made in the casing 2 . The electrode 9 forms annular channels 14, 15 and 16, respectively, with the housing 1, the pipe 12 and the casing 2. The annular channels 14 and 15 are connected by radial channels 17, made in the electrode 9 and located in the plane of the front end of the rear electrical insulating sleeve 8. The annular channels 14 and 16 are connected by radial channels 18, made in the housing 1 and located in the plane of the rear end of the electrical insulating sleeve 10. Supply water is carried through the channel 19. The electrode 9 is mounted and the annular channel 14 is sealed by the nut 20. The casing 2 is mounted on the housing 1 and the ring channel 16 is sealed by the nut 21 through the washer soliter 22.

При работе плазмотрона охлаждающая жидкость по каналу 19 трубопровода 12 подается к рабочей зоне электрода 9 (полость "d"), заполняет кольцевой канал 15, охлаждая при этом электрод изнутри. Из канала 15 через каналы 17 охлаждающая жидкость поступает в кольцевой канал 14, охлаждая электрод 9 снаружи и корпус 1 изнутри. По 18 каналам охлаждающая жидкость подается в кольцевой канал 16, охлаждая корпус 1 снаружи и кожух 2, и отводится на слив по каналу 13. Охлаждение сопел 3 и 4 осуществляется через надежный тепловой контакт в корпус 1 и кожух 2 соответственно, а также плазмообразующим и защитным газами. Плазмообразующий газ через каналы 23 и 5 поступает в полость плазмообразующего сопла 3, защитный газ по каналу 6 поступает под сопло 4. When the plasma torch is operating, the cooling liquid is supplied through the channel 19 of the pipeline 12 to the working area of the electrode 9 (cavity "d"), fills the annular channel 15, while cooling the electrode from the inside. From channel 15, through channels 17, coolant enters the annular channel 14, cooling the electrode 9 from the outside and the housing 1 from the inside. Through 18 channels, coolant is supplied to the annular channel 16, cooling the casing 1 from the outside and the casing 2, and is discharged to the drain via channel 13. The nozzles 3 and 4 are cooled through reliable thermal contact into the casing 1 and the casing 2, respectively, as well as by plasma-forming and protective gases. The plasma forming gas through the channels 23 and 5 enters the cavity of the plasma forming nozzle 3, the protective gas through the channel 6 enters under the nozzle 4.

Лабораторные испытания опытного образца плазмотрона с габаритами, равными D29•70 мм и массой 0,3 кг при расходе охлаждающей жидкости (воды) 2,5 л/мин и сварочном токе 450 А при сварке на обратной полярности показали, что температура электрода при этом вблизи рабочей зоны не превышает 220-250oС. При расходе воды 5-6 л/мин электрод выдерживает токовую нагрузку до 800 А. Стойкость электрода составляет не менее 300 ч.Laboratory tests of a prototype plasmatron with dimensions equal to D29 • 70 mm and a mass of 0.3 kg at a flow rate of coolant (water) of 2.5 l / min and a welding current of 450 A when welding at reverse polarity showed that the electrode temperature was near the working area does not exceed 220-250 o C. At a water flow rate of 5-6 l / min, the electrode can withstand a current load of up to 800 A. The resistance of the electrode is at least 300 hours

Claims (1)

Плазмотрон, содержащий полый цилиндрический электрод, корпус с закрепленным на нем плазмообразующим соплом и выполненными в нем каналами для подвода плазмообразующего газа; две изоляционные втулки, установленные между корпусом и электродом на противоположных концах корпуса; систему охлаждения с центральным и соосным с ним кольцевым каналами, соединенными между собой и расположенными в электроде, кольцевым каналом, образованным наружной поверхностью электрода и внутренней поверхностью корпуса и расположенным между изоляционными втулками, соединенным с полостью электрода перепускными радиальными каналами, выполненными в электроде, отличающийся тем, что он дополнительно снабжен двумя изоляционными втулками, установленными на внешней стороне корпуса на противоположных концах, на которые устанавливается кожух с закрепленным на нем плазмообразующим соплом и выполненными в нем каналами для подвода защитного газа и отвода охлаждающей жидкости; между внешней поверхностью корпуса и внутренней поверхностью кожуха в осевом направлении между изоляционными втулками расположен кольцевой канал системы охлаждения, соединенный с кольцевым каналом, расположенным между корпусом и электродом, радиальными перепускными каналами, выполненными в корпусе; перепускные радиальные каналы, выполненные в электроде, расположены в хвостовой его части, а перепускные каналы, выполненные в корпусе, расположены вблизи передней внешней изоляционной втулки, а отводящий канал, выполненный в кожухе, у противоположного конца. A plasma torch containing a hollow cylindrical electrode, a housing with a plasma-forming nozzle mounted on it and channels made therein for supplying a plasma-forming gas; two insulating sleeves mounted between the housing and the electrode at opposite ends of the housing; cooling system with a central and coaxial annular channels connected to each other and located in the electrode, an annular channel formed by the outer surface of the electrode and the inner surface of the housing and located between the insulating sleeves connected to the electrode cavity bypass radial channels made in the electrode, characterized in that it is additionally equipped with two insulating sleeves mounted on the outer side of the housing at opposite ends, which are installed ozhuh mounted thereon with plasma forming nozzle and formed therein channels for supplying shielding gas and a coolant outlet; between the outer surface of the housing and the inner surface of the casing in the axial direction between the insulating sleeves is an annular channel of the cooling system connected to an annular channel located between the housing and the electrode, radial bypass channels made in the housing; bypass radial channels made in the electrode are located in its rear part, and bypass channels made in the housing are located near the front external insulating sleeve, and the outlet channel made in the casing is at the opposite end.
RU2001114559A 2001-05-28 2001-05-28 Plasmotron RU2198772C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001114559A RU2198772C1 (en) 2001-05-28 2001-05-28 Plasmotron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001114559A RU2198772C1 (en) 2001-05-28 2001-05-28 Plasmotron

Publications (1)

Publication Number Publication Date
RU2198772C1 true RU2198772C1 (en) 2003-02-20

Family

ID=20250148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001114559A RU2198772C1 (en) 2001-05-28 2001-05-28 Plasmotron

Country Status (1)

Country Link
RU (1) RU2198772C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196256U1 (en) * 2019-12-30 2020-02-21 Общество с ограниченной ответственностью "Центр электронно-лучевых и лазерных технологий" Plasma torch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196256U1 (en) * 2019-12-30 2020-02-21 Общество с ограниченной ответственностью "Центр электронно-лучевых и лазерных технологий" Plasma torch

Similar Documents

Publication Publication Date Title
US5362939A (en) Convertible plasma arc torch and method of use
US6084199A (en) Plasma arc torch with vented flow nozzle retainer
US4140892A (en) Plasma-arc spraying torch
EP0072408B1 (en) Plasma spray gun nozzle and coolant deionizer
CN110067712B (en) Magnetic plasma thruster inducing axial magnetic field
JPS6213272A (en) Hybrid non-transfer arc plasma torch and operating method thereof
US9457418B2 (en) Gas-cooled welding gun for an arc welding device
CN103391678A (en) Plasma torch of non-transferred and hollow type
KR0137957B1 (en) Gas cooled cathode for arc torch
US3818174A (en) Long arc column forming plasma generator
JP2009527882A (en) Transfer arc type plasma torch
US6852944B2 (en) Retractable electrode coolant tube
RU2309825C2 (en) Plasmatron
JPH0311871B2 (en)
RU2198772C1 (en) Plasmotron
AU2005294324B2 (en) Plasma arc collimator design and construction
WO1989000476A1 (en) Burner for plasma cutting and welding
EP0072409B1 (en) Plasma spray gun nozzle
CA2004226A1 (en) Liquid-cooled plasma torch with transferred arc
JPH04355100A (en) High enthalpy plasma torch
RU164621U1 (en) PLASMOTRON
RU2060130C1 (en) Plasmotron
CN108770109B (en) Direct current arc ultra-temperature gas heating device
JP5091801B2 (en) Composite torch type plasma generator
WO2001028299A1 (en) An electrode for a plasma torch

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090529