RU2191408C2 - Портальный радиационный монитор - Google Patents

Портальный радиационный монитор Download PDF

Info

Publication number
RU2191408C2
RU2191408C2 RU2000130805A RU2000130805A RU2191408C2 RU 2191408 C2 RU2191408 C2 RU 2191408C2 RU 2000130805 A RU2000130805 A RU 2000130805A RU 2000130805 A RU2000130805 A RU 2000130805A RU 2191408 C2 RU2191408 C2 RU 2191408C2
Authority
RU
Russia
Prior art keywords
light
radiation
portal
monitor
plastic
Prior art date
Application number
RU2000130805A
Other languages
English (en)
Inventor
С.Ю. Кузнецов
А.А. Шевчик
А.В. Саламатин
И.Е. Чириков-Зорин
Original Assignee
Закрытое акционерное общество "ИНТРА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "ИНТРА" filed Critical Закрытое акционерное общество "ИНТРА"
Priority to RU2000130805A priority Critical patent/RU2191408C2/ru
Application granted granted Critical
Publication of RU2191408C2 publication Critical patent/RU2191408C2/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Использование: в области охраны окружающей среды, а точнее в области регистрации радиоактивных излучений ядерных материалов и радиационно-опасных веществ, причем наиболее эффективно для регистрации и идентификации радионуклидов при перемещении через монитор с помощью различных объектов ядерных материалов и радиационно-опасных веществ, а также для контроля радиационной обстановки окружающей среды. Сущность изобретения: портальный радиационный монитор включает двухстоечный портал с расположенными в нем сцинтилляционными детекторами и спектрометрическими усилителями, а также включает электронную систему обработки сигналов, блок световой и звуковой сигнализации. Сцинтиллятор представляет собой прямоугольный блок, один из концов которого выполнен плоским, а другой - в форме сужающейся пирамиды, переходящей своей верхней частью в цилиндр. Технический результат: расширение области применения, повышение пороговой чувствительности, надежности, а также обеспечение автоматизации и самонастройки режима работы. 2 ил.

Description

Изобретение - портальный радиационный монитор относится к области охраны окружающей среды, а точнее к области регистрации радиоактивных излучений ядерных материалов и радиационно-опасных веществ, причем наиболее эффективно он может быть использован для регистрации радиоактивных излучений и качественной идентификации радионуклидов, при перемещении через него с помощью различных объектов (человеком, транспортирами, различными транспортными средствами и т. п. ), ядерных материалов и радиационно-опасных веществ, а также для контроля радиационной обстановки окружающей среды.
Известен радиационный монитор-турникет (КСАР1У.02), предназначенный для регистрации радиоактивных излучений, при перемещении через него, ядерных материалов и радиационно-опасных веществ (1).
Известный радиационный монитор-турникет включает турникет, состоящий из двух стоек, в которых расположены сцинтилляционные детекторы (на основе неорганического Nal[Tl] ), (предназначенные в первую очередь для регистрации гамма-излучения) и пропорциональные гелиевые счетчики (предназначенных в основном для регистрации нейтронного излучения), спецвычислитель для обработки результатов детектирования, узел световой и звуковой сигнализации, механизм ограничения передвижения объекта, калибратор, модем для передачи информации о результатах детектирования, а также дополнительно может включать в себя узел идентификации личности человека и работает в режимах "ожидание", "движение" и "идентификация".
Недостатками известного радиационного монитора-турникета являются:
а) его пониженная пороговая чувствительность, обеспечивающая начало регистрации уровней радиоактивных излучений, эквивалентных уровням радиоактивных излучений 0,1 г (в режиме "ожидание") и 0,3 г (в режиме "движение") 239Рu или 3 г (в режиме "ожидание") и 10 г (в режиме "движение") 235U;
б) его ограниченная область применения, обусловленная:
- возможностью его использования для регистрации радиоактивных излучений при перемещении через него ядерных материалов и радиационно-опасных веществ только человеком;
- невозможностью качественной идентификации перемещаемых через него радионуклидов;
в) ненадежность его работы, обусловленная:
- снижением пороговой чувствительности, вследствие изменения свойств неорганического сцинтиллятора со временем ("старение"), а также в зависимости от изменения температуры и/или влажности окружающей среды;
- снижением пороговой чувствительности при перемещении через него ядерных материалов и радиационно-опасных веществ, обладающих повышенным уровнем нейтронного излучения или повышенных количеств нейтроноизлучающих ядерных материалов и радиационно-опасных веществ (данный недостаток обусловлен тем, что с увеличением плотности потока нейтронов происходит постепенное слияние выдаваемых пропорциональными гелиевыми счетчиками выходных импульсов, которые, начиная с определенного уровня плотности потока нейтронов, будут сливаться в один единый импульс, в результате чего произойдет фактическое прекращение регистрации пропорциональными гелиевыми счетчиками нейтронного излучения, а также снижение общей пороговой чувствительности, причем указанный недостаток будет характерен для любого радиационного монитора, имеющего в своем составе такие счетчики).
Известен портальный радиационный монитор (КСАР1У.03), предназначенный для регистрации радиоактивных излучений, при перемещении через него ядерных материалов и радиационно-опасных веществ (1).
Известный портальный радиационный монитор включает двухстоечный портал, в котором расположены сцинтилляционные детекторы, состоящие из пластиковых сцинтилляторов и фотоэлектронных умножителей и пропорциональные гелиевые счетчики, датчики обнаружения объекта, а также включает выносной блок, содержащий пульт управления с микро-ЭВМ, сирену и исполнительное устройство, а также модем для передачи информации о результатах детектирования и работает в режимах "ожидание" и "движение".
Недостатками известного портального радиационного монитора являются:
а) пониженная пороговая чувствительность, обеспечивающая начало регистрации уровней радиоактивных излучений, эквивалентных уровням радиоактивных излучений 0,1 г (в режиме "ожидание") и 0,3 г (в режиме "движение) 239Рu или 3 г (в режиме "ожидание") и 10 г (в режиме "движение") 235U;
б) ограниченная область применения, обусловленная:
- возможностью его использования для регистрации радиоактивных излучений при перемещении через него ядерных материалов и радиационно-опасных веществ только человеком;
- невозможностью качественной идентификации перемещаемых через него радионуклидов;
в) ненадежность его работы, обусловленная:
- снижением пороговой чувствительности, вследствие изменения свойств пластикового сцинтиллятора со временем ("старение"), а также в зависимости от изменения температуры и/или влажности окружающей среды;
- снижением пороговой чувствительности при перемещении через него ядерных материалов и радиационно-опасных веществ, обладающих повышенным уровнем нейтронного излучения или повышенных количеств нейтроноизлучающих ядерных материалов и радиационно-опасных веществ (по причинам, указанным выше);
г) неавтоматизированность и невозможность самонастройки режима его работы, обусловленные тем, что известный портальный радиационный монитор работает под внешним управлением (о чем говорит наличие в его составе пульта управления).
Наиболее близким по технической сущности к заявляемому является транспортный портальный радиационный монитор (КСАР1У.04), предназначенный для регистрации радиоактивных излучений, при перемещении через него с помощью различных транспортных средств ядерных материалов и радиационно-опасных веществ и для контроля радиационной обстановки окружающей среды (1), который может быть использован также и для регистрации радиоактивных излучений при перемещении через него ядерных материалов и радиационно-опасных веществ человеком или малогабаритными объектами (транспортерами, малыми транспортными средствами и т.п.).
Известный транспортный портальный радиационный монитор включает двухстоечный (двухколонный) портал с расположенными в нем сцинтилляционными детекторами, пропорциональными гелиевыми счетчиками и датчиками обнаружения объекта (датчиками наличия объекта измерения), а также включает электронную систему обработки сигналов, блок световой и звуковой сигнализации и пульт управления (пульт оператора) и работает в режимах "ожидание" и "движение".
Каждый из сцинтилляционных детекторов состоит из пластикового сцинтиллятора объемом 2700 см3, соединенного с преобразователем световых сигналов в электрические (фотоэлектронным умножителем, фотодиодом и т.п.), снабженным высоковольтным источником питания, а электронная система обработки сигналов соединена с преобразователями световых сигналов в электрические сцинтилляционных детекторов, пропорциональными гелиевыми счетчиками и пультом управления (наличие в составах сцинтилляционных детекторов преобразователей световых сигналов в электрические, снабженных высоковольтными источниками питания, а также вышеуказанная взаимосвязь элементов транспортного портального монитора является обязательной, т.к. в противном случае транспортный портальный радиационный монитор не будет функционировать по своему назначению)(2).
Недостатками известного транспортного портального радиационного монитора являются:
а) его пониженная пороговая чувствительность, обеспечивающая начало регистрации уровней радиоактивных излучений, эквивалентных уровням радиоактивных излучений 90 г (в режимах "ожидание" и "движение") 239Pu или 200 г (в режиме "движение") 235U;
б) его ограниченная область применения, обусловленная невозможностью качественной идентификации перемещаемых через него радионуклидов;
в) ненадежность его работы, обусловленная:
- снижением пороговой чувствительности, вследствие изменения свойств пластикового сцинтиллятора со временем ("старение"), а также в зависимости от изменения температуры и/или влажности окружающей среды;
- снижением пороговой чувствительности при перемещении через него ядерных материалов и радиационно-опасных веществ, обладающих повышенным уровнем нейтронного излучения или повышенных количеств нейтроноизлучающих ядерных материалов и радиационно-опасных веществ (по причинам, указанным выше);
г) неавтоматизированность и невозможность самонастройки режима его работы, обусловленные тем, что электронная система обработки сигналов работает под внешним управлением (о чем говорит наличие в составе транспортного портального монитора пульта управления (пульта оператора).
Преимуществами заявляемого портального радиационного монитора являются расширение области его применения, повышение его пороговой чувствительности, надежности, а также обеспечение автоматизации и самонастройки режима его работы.
Указанные преимущества достигаются за счет того, что заявляемый портальный радиационный монитор включает двухстоечный портал с расположенными в нем сцинтилляционными детекторами и спектрометрическими усилителями, а также включает электронную систему обработки сигналов, блок световой и звуковой сигнализации и работает в режимах "ожидание" и "движение".
Каждый из сцинтилляционных детекторов состоит из пластикового сцинтиллятора объемом: не менее 10000 см3 , соединенного с преобразователем световых сигналов в электрические (фотоэлектронным умножителем, фотодиодом и т. п.), снабженным высоковольтным источником питания.
Электронная система обработки сигналов состоит из аналого-цифрового преобразователя, дисплея и соединенного с ними системного блока персонального компьютера, причем электронная система обработки сигналов соединена своим системным блоком персонального компьютера с датчиками обнаружения объекта, высоковольтными источниками питания преобразователей световых сигналов в электрические и блоком световой и звуковой сигнализации, а аналого-цифровым преобразователем через спектрометрические усилители с преобразователями световых сигналов в электрические сцинтилляционных детекторов.
Пластиковые сцинтилляторы представляют собой каждый прямоугольный блок, один из концов которого выполнен плоским, а другой в форме сужающейся пирамиды, переходящей своей верхней частью в цилиндр, поверхность плоского конца каждого пластикового сцинтиллятора, часть его боковой поверхности высотой H1, прилегающая к поверхности плоского конца пластикового сцинтиллятора, а также боковая поверхность сужающейся пирамиды, переходящей своей верхней частью в цилиндр, высотой Н2 покрыты слоями отражающего световые лучи материала, часть боковой поверхности пластикового сцинтиллятора высотой Н3, прилегающая к боковой поверхности сужающейся пирамиды, переходящей своей верхней частью в цилиндр, покрыта слоем поглощающего световые лучи материала, а остальная часть боковой поверхности пластикового сцинтиллятора высотой Н4 покрыта слоем нейтрального материала с коэффициентами поглощения и отражения световых лучей, отличающимися друг от друга не более чем на 10%, причем соотношения между H1, H2, Н3 и Н4 выбраны такими, чтобы на выходе каждого из преобразователей световых сигналов в электрические разница между величинами импульсов фототока, полученных под воздействием световых квантов, образовавшихся в результате радиоактивного облучения любого пластикового сцинтиллятора в его наиболее удаленных друг от друга точках, не превышала бы 10%, в качестве материала пластиковых сцинтилляторов используют твердый органический полимер со сцинтилляционными добавками, обладающими световым выходом относительно антрацена не менее чем 0,5, а с преобразователями световых сигналов в электрические пластиковые сцинтилляторы соединены верхней цилиндрической частью сужающейся пирамиды.
Отличительными признаками заявляемого устройства является то, что:
а) пластиковые сцинтилляторы имеют объем не менее чем 10000 см3 каждый;
б) пластиковые сцинтилляторы представляют собой каждый прямоугольный блок, один из концов которого выполнен плоским, а другой в форме сужающейся пирамиды, переходящей своей верхней частью в цилиндр, поверхность плоского конца каждого пластикового сцинтиллятора, часть его боковой поверхности высотой H1, прилегающая к поверхности плоского конца пластикового сцинтиллятора, а также боковая поверхность сужающейся пирамиды, переходящей своей верхней частью в цилиндр, высотой H2 покрыты слоями отражающего световые лучи материала, часть боковой поверхности пластикового сцинтиллятора высотой Н3, прилегающая к боковой поверхности сужающейся пирамиды, переходящей своей верхней частью в цилиндр, покрыта слоем поглощающего световые лучи материала, а остальная часть боковой поверхности пластикового сцинтиллятора высотой Н4 покрыта слоем нейтрального материала с коэффициентами поглощения и отражения световых лучей, отличающимися друг от друга не более чем на 10%;
в) соотношения между H1, H2, Н3 и H4, выбраны такими, чтобы на выходе каждого из преобразователей световых сигналов в электрические разница между величинами импульсов фототока, полученных под воздействием световых квантов, образовавшихся в результате радиоактивного облучения любого пластикового сцинтиллятора в его наиболее удаленных друг от друга точках, не превышала бы 10%, а в качестве материала пластиковых сцинтилляторов используют твердый органический полимер со сцинтилляционными добавками, обладающими световым выходом относительно антрацена не менее чем 0,5;
г) с преобразователями световых сигналов в электрические пластиковые сцинтилляторы соединены верхней переходящей в цилиндр частью сужающейся пирамиды;
д) электронная система обработки сигналов, состоит из аналого-цифрового преобразователя, дисплея и соединенного с ними системного блока персонального компьютера;
е) портальный радиационный монитор дополнительно содержит спектрометрические усилители, причем электронная система обработки сигналов соединена с датчиками обнаружения объекта, высоковольтными источниками питания преобразователей световых сигналов в электрические и блоком световой и звуковой сигнализации своим системным блоком персонального компьютера, а с преобразователями световых сигналов в электрические сцинтилляционных детекторов своим аналого-цифровым преобразователем через спектрометрические усилители.
Заявляемое устройство иллюстрируется чертежами, представленными на фиг. 1-2.
На фиг. 1 представлен общий вид в разрезе портального радиационного монитора в варианте с четырьмя сцинтилляционными детекторами.
На фиг.2 представлена конструкция сцинтилляционного детектора.
Заявляемое устройство состоит из портала 1, электронной системы обработки сигналов 2, сцинтилляционных детекторов 3, спектрометрических усилителей 4, датчиков обнаружения объекта 5 и блока световой и звуковой сигнализации 6.
Электронная система обработки сигналов 2 состоит из аналого-цифрового преобразователя 7, системного блока персонального компьютера 8 и дисплея 9.
Сцинтилляционные детекторы 3 состоят каждый из преобразователя световых сигналов в электрические 10, высоковольтного источника питания 11, пластикового сцинтиллятора 12, покрытого слоями отражающего световые лучи материала 13, слоем поглощающего световые лучи материала 14 и слоем нейтрального материала 15.
Заявляемый радиационный портальный монитор работает следующим образом.
После подачи напряжения на элементы радиационного портального монитора в высоковольтных источниках питания 11 подаваемое на них напряжение постоянного тока в 12V поднимается до величины в 1000 - 3000 V и подается на преобразователи световых сигналов в электрические 10 сцинтилляционных детекторов 3, которые сразу же начинают производить измерение уровня радиационного фона окружающей среды. Одновременно с этим системный блок персонального компьютера 8 с заранее заложенным в него программным обеспечением осуществляет (примерно в течение 1 мин) тестирование работоспособности сцинтилляционных детекторов 3 и на основе анализа результатов теста корректирует размеры величин высокого напряжения, подаваемых с высоковольтных источников питания 11 на преобразователи световых сигналов в электрические 10 (что в дальнейшем сводит к минимуму разброс в результатах измерений как фоновых уровней радиации, так и уровней радиации, перемещаемых через радиационный портальный монитор ядерных материалов и радиационно-опасных веществ). После завершения вышеуказанных операций радиационный портальный монитор готов к работе, при этом в блоке световой и звуковой сигнализации 6 загорается зеленый свет.
При перемещении через портал 1 какого-либо объекта с ядерными материалами или радиационно-опасными веществами срабатывают датчики обнаружения объекта 5, передавая результаты обнаружения (наличие объекта и время обнаружения) в системный блок персонального компьютера 8. Системный блок персонального компьютера 8 в свою очередь сразу же передает сигнал о наличии объекта в блок световой и звуковой сигнализации 6 и в дисплей 9. В блоке световой и звуковой сигнализации 6 зеленый свет меняется на желтый, указывая на запрет перемещения через портал 1 других объектов, а на экране дисплея 9 отображаются сигнал присутствия объекта в портале 1, время присутствия, схематическое взаиморасположение (мнемосхема) объекта и сцинтилляционных детекторов 3, таблица идентифицируемых радионуклидов, а также графическая гистограмма изменения скорости счета в сцинтилляционном(ых) детекторе(ах) 3. Одновременно с этим под воздействием радиоактивного излучения в пластиковых сцинтилляторах 12 начинает происходить образование световых импульсов (вспышек). Кванты света, отражаясь от поверхности пластиковых сцинтилляторов 12, перемещаются в направлении его конца, выполненного в форме сужающейся пирамиды, переходящей своей верхней частью в цилиндр, откуда поступают в преобразователь световых сигналов в электрические 10. Для того, чтобы в процессе перемещения световых квантов в пластиковых сцинтилляторах 12 не происходило бы ухудшения светосбора (не происходило бы снижения уровня световой активности) поверхности пластиковых сцинтилляторов 12 покрыты слоями отражающего световые лучи материала 13, а для того, чтобы световая активность не увеличивалась сверх допустимого порога - слоями поглощающего световые лучи материала 14 и слоями нейтрального материала 15, причем соотношения между H1, H2, Н3 и Н4, также обеспечивающие выполнение этих требований, определяются на основании вышеуказанных условий. Кроме того, геометрическая форма, в которой выполнены пластиковые сцинтилляторы 12, придает им свойства направленных световодов. Все это, а также свойства материала, из которого изготовлены пластиковые сцинтилляторы 12 и их вышеуказанный объем обеспечивают с одной стороны повышение пороговой чувствительности радиационного портального монитора, а с другой снижает к минимуму разброс результатов измерений одного и того же уровня радиации во времени.
В преобразователях световых сигналов в электрические 10 (в качестве которых используют фотоэлектронные умножители, фотодиоды и т.п.), кванты света генерируют поток электронов (фототек), который в виде импульсов поступает в спектрометрические усилители 4. В спектрометрических усилителях 4 происходит усиление и окончательное формирование импульсов фототока, которые затем поступают в аналого-цифровой преобразователь 7. В аналого-цифровом преобразователе 7 электрические импульсы преобразуются в цифровые значения, передающиеся затем в системный блок персонального компьютера 8, где в соответствии с заложенным в него программным обеспечением уже определены "цифровые окна" (границы энергий, в которых отношение сигнал-шум для каждого радионуклида наиболее оптимально), соответствующие тому или иному типу радионуклида, что обеспечивает возможность качественной идентификации радионуклидов в ядерных материалах или радиационно-опасных веществах и позволяет расширить область применения заявляемого радиационного портального монитора.
После обработки системный блок персонального компьютера 8 передает результаты детектирования в дисплей 9 и одновременно с этим подает сигнал в блок световой и звуковой сигнализации 6, где желтый свет меняется на красный и включается звуковая сигнализация. На экране дисплея 8 при регистрации сцинтилляционным(и) детектором(и) 3 превышений фоновых уровней активности изменяется цвет соответствующего(их) сцинтилляционного(их) детектора(ов) 3, в таблице идентифицируемых радионуклидов - цвет зафиксированного радионуклида(ов), а на графике - цвет линии соответствующей гистограммы.
Одновременно с этим в течение всего времени работы радиационного портального монитора системный блок персонального компьютера 8 в соответствии с заложенным в него программным обеспечением осуществляет корректировку высокого напряжения, подаваемого высоковольтными источниками питания 11 на преобразователи световых сигналов в электрические 10 в зависимости от суммарного времени эксплуатации пластиковых сцинтилляторов 12 (степени "старения" их материала), а также температуры и влажности окружающей среды, что обеспечивает повышение надежности работы радиационного портального монитора.
Программное обеспечение работает на любом IBM-PC - совместимом компьютере под управлением операционной системы MS-DOS в автономном, автоматическом режиме и не требует никаких действий оператора, кроме включения сетевого питания. Все это обеспечивает возможность заявляемого радиационного портального монитора работать в полностью автоматизированном самонастраивающемся режиме, т.к. установку энергетических границ "цифровых окон" проводят только один раз при его наладке или в случаях каких-либо изменений в его детектирующей части, таких как замена пластиковых сцинтилляторов 12, изменение параметров усиления спектрометрических усилителей 4, энергетических границ "цифровых окон", порогов чувствительности и т.п. Кроме того, все вышеуказанное позволяет отказаться от использования в заявляемом радиационном портальном мониторе, пропорциональных гелиевых счетчиков, вследствие того, что вышеуказанные сцинтилляционные детекторы 3 способны регистрировать не только рассчитанные на пропорциональные гелиевые счетчики уровни плотностей потоков нейтронного излучения, но также и их повышенные уровни, при которых пропорциональные гелиевые счетчики снижают пороговую чувствительность радиационного портального монитора, что также обеспечивает повышение надежности его работы.
Испытания показали, что заявляемый радиационный портальный монитор:
- обеспечивает возможность качественной идентификации таких радионуклидов, как 241Аm, 133Ba, 137Cs, 60Co, 235U и 239Рu;
- обеспечивает возможность качественной регистрации перемещаемых через него нейтроноизлучающих ядерных материалов и радиационно-опасных веществ с плотностями потоков нейтронного излучения в 10-100 раз большими, чем те, на которые рассчитан транспортный портальный радиационным монитор;
- обладает пороговой чувствительностью, обеспечивающей начало регистрации уровней радиоактивных излучений, эквивалентных уровням радиоактивных излучений 0,03 г (в режимах "ожидание" и "движение) 239Рu или 1 г (в режиме "ожидание" и "движение") 235U;
- не снижает свою пороговую чувствительность, вследствие изменения свойств материала сцинтилляционного детектора со временем ("старение"), а также в зависимости от изменения температуры и/или влажности окружающей среды;
- работает в полностью автоматизированном самонастраивающемся режиме, не требующим его корректировки с помощью внешнего управления.
ЛИТЕРАТУРА
1. Универсальный автоматизированный радиационный комплекс для систем учета, контроля и физической защиты ядерных материалов КСАР1У "Агелат", Министерство Российской Федерации по атомной энергии, Москва, 1999, Координационный центр "Атомбезопасность", Рекламный проспект.
2. М. Т. Максимов, Г.О. Оджагов, Радиоактивные загрязнения и их измерение, Москва, Энергоатомиздат, 1989, с. 55-57, 66-67, 102-105.

Claims (1)

  1. Портальный радиационный монитор, включающий двухстоечный портал с расположенными в нем датчиками обнаружения объекта и сцинтилляционными детекторами, каждый из которых состоит из пластикового сцинтиллятора, соединенного с преобразователем световых сигналов в электрические, снабженным высоковольтным источником питания, а также включающий электронную систему обработки сигналов и блок световой и звуковой сигнализации, отличающийся тем, что пластиковые сцинтилляторы представляют собой каждый прямоугольный блок объемом не менее чем 10000 см3, один из концов которого выполнен плоским, а другой в форме сужающейся пирамиды, переходящей своей верхней частью в цилиндр, поверхность плоского конца каждого пластикового сцинтиллятора, часть его боковой поверхности высотой Н1, прилегающая к поверхности плоского конца пластикового сцинтиллятора, а также боковая поверхность сужающейся пирамиды, переходящей своей верхней частью в цилиндр, высотой Н2 покрыты слоями отражающего световые лучи материала, часть боковой поверхности пластикового сцинтиллятора высотой Н3, прилегающая к боковой поверхности сужающейся пирамиды, переходящей своей верхней частью в цилиндр, покрыта слоем поглощающего световые лучи материала, а остальная часть боковой поверхности пластикового сцинтиллятора высотой Н4 покрыта слоем нейтрального материала с коэффициентами поглощения и отражения световых лучей, отличающимися друг от друга не более чем на 10%, соотношения между Н1, Н2, Н3 и Н4 выбраны такими, чтобы на выходе каждого из преобразователей световых сигналов в электрические разница между величинами импульсов фототока, полученных под воздействием световых квантов, образовавшихся в результате радиоактивного облучения любого пластикового сцинтиллятора в его наиболее удаленных друг от друга точках, не превышала бы 10%, в качестве материала пластиковых сцинтилляторов используют твердый органический полимер со сцинтилляционными добавками, обладающими световым выходом относительно антрацена не менее чем 0,5, с преобразователями световых сигналов в электрические пластиковые сцинтилляторы соединены верхней переходящей в цилиндр частью сужающейся пирамиды, электронная система обработки сигналов состоит из аналого-цифрового преобразователя, дисплея и соединенного с ними системного бока персонального компьютера, портальный радиационный монитор дополнительно содержит спектрометрические усилители, причем электронная система обработки сигналов соединена с датчиками обнаружения объекта, высоковольтными источниками питания преобразователей световых сигналов в электрические и блоком световой и звуковой сигнализации своим системным блоком персонального компьютера, а с преобразователями световых сигналов в электрические сцинтилляционных детекторов своим аналого-цифровым преобразователем через спектрометрические усилители.
RU2000130805A 2000-12-08 2000-12-08 Портальный радиационный монитор RU2191408C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000130805A RU2191408C2 (ru) 2000-12-08 2000-12-08 Портальный радиационный монитор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000130805A RU2191408C2 (ru) 2000-12-08 2000-12-08 Портальный радиационный монитор

Publications (1)

Publication Number Publication Date
RU2191408C2 true RU2191408C2 (ru) 2002-10-20

Family

ID=20243160

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000130805A RU2191408C2 (ru) 2000-12-08 2000-12-08 Портальный радиационный монитор

Country Status (1)

Country Link
RU (1) RU2191408C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068142A1 (ru) * 2008-12-09 2010-06-17 Открытое Акционерное Общество "Hayчнo-Тexничecкий Центр "Patэk" Способ радиационного контроля перемещающихся объектов и портальный радиационный монитор для его осуществления
US7820977B2 (en) 2005-02-04 2010-10-26 Steve Beer Methods and apparatus for improved gamma spectra generation
US7847260B2 (en) 2005-02-04 2010-12-07 Dan Inbar Nuclear threat detection
US8173970B2 (en) 2005-02-04 2012-05-08 Dan Inbar Detection of nuclear materials
RU168002U1 (ru) * 2015-06-22 2017-01-16 Федеральное Государственное Бюджетное Учреждение Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий Монитор для обнаружения движущихся радиоактивных объектов
EP1749220B1 (en) * 2004-05-24 2019-10-09 Symetrica Limited Gamma ray detectors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749220B1 (en) * 2004-05-24 2019-10-09 Symetrica Limited Gamma ray detectors
US7820977B2 (en) 2005-02-04 2010-10-26 Steve Beer Methods and apparatus for improved gamma spectra generation
US7847260B2 (en) 2005-02-04 2010-12-07 Dan Inbar Nuclear threat detection
US8143586B2 (en) 2005-02-04 2012-03-27 Dan Inbar Nuclear threat detection
US8173970B2 (en) 2005-02-04 2012-05-08 Dan Inbar Detection of nuclear materials
WO2010068142A1 (ru) * 2008-12-09 2010-06-17 Открытое Акционерное Общество "Hayчнo-Тexничecкий Центр "Patэk" Способ радиационного контроля перемещающихся объектов и портальный радиационный монитор для его осуществления
RU168002U1 (ru) * 2015-06-22 2017-01-16 Федеральное Государственное Бюджетное Учреждение Государственный Научный Центр Российской Федерации Институт Физики Высоких Энергий Монитор для обнаружения движущихся радиоактивных объектов

Similar Documents

Publication Publication Date Title
EP2113791B1 (en) Sodium iodide sctinitllator with flat plastic scintillator for Compton suppression
US5514870A (en) Fast CsI-phoswich detector
US7288771B2 (en) Fiber optic thermal/fast neutron and gamma ray scintillation detector
CN101073019B (zh) 具有相互作用深度灵敏度的像素化探测器
CN101210894B (zh) 可同时进行辐射成像检查和放射性物质监测的系统及方法
KR102010151B1 (ko) 뮤온 검출기 및 이를 포함하는 뮤온 검출시스템
RU2191408C2 (ru) Портальный радиационный монитор
CN109975854B (zh) 用于脉冲波形甄别的方法和系统
US20110261650A1 (en) Method for the radiation monitoring of moving objects and a radiation portal monitor for carrying out said method
Madden et al. An imaging neutron/gamma-ray spectrometer
US6134289A (en) Thermal neutron detection system
RU2129289C1 (ru) Устройство для обнаружения радиоактивных материалов
JP4091148B2 (ja) 放射線検出器及びそれを用いた放射線モニタ
JPH0513279B2 (ru)
CN201043956Y (zh) 可同时进行辐射成像检查和放射性物质监测的系统
US3296438A (en) Nuclear particle detection system and calibration means therefor
US4956556A (en) Radiation scintillation detector
ATE120856T1 (de) System zur messung von feuchtigkeit und dichte.
RU2158011C2 (ru) Детектор для регистрации нейтронов и гамма-излучения
RU2364890C1 (ru) Способ обнаружения ядерных материалов и радиоактивных веществ
JPH01152390A (ja) 高速中性子検出器
Finocchiaro et al. Field tests of the MICADO monitoring detectors in real radwaste storages
JP2001013254A (ja) 平板状中性子線検出器及びこれを用いた中性子源計測装置
RU60739U1 (ru) Транспортный радиационный монитор
JPH0679067B2 (ja) シンチレーション式β線検出器