RU2186462C2 - Способ передачи и приема сигналов по радиоканалу - Google Patents

Способ передачи и приема сигналов по радиоканалу Download PDF

Info

Publication number
RU2186462C2
RU2186462C2 RU2000113642/09A RU2000113642A RU2186462C2 RU 2186462 C2 RU2186462 C2 RU 2186462C2 RU 2000113642/09 A RU2000113642/09 A RU 2000113642/09A RU 2000113642 A RU2000113642 A RU 2000113642A RU 2186462 C2 RU2186462 C2 RU 2186462C2
Authority
RU
Russia
Prior art keywords
signals
controlled
primes
periods
points
Prior art date
Application number
RU2000113642/09A
Other languages
English (en)
Other versions
RU2000113642A (ru
Inventor
К.И. Гутин
С.А. Цагарейшвили
В.А. Новиков
Н.С. Цагарейшвили
А.С. Цагарейшвили
Ю.А. Литвин
В.О. Бородченко
Original Assignee
Гутин Клавдий Иосифович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гутин Клавдий Иосифович filed Critical Гутин Клавдий Иосифович
Priority to RU2000113642/09A priority Critical patent/RU2186462C2/ru
Publication of RU2000113642A publication Critical patent/RU2000113642A/ru
Application granted granted Critical
Publication of RU2186462C2 publication Critical patent/RU2186462C2/ru

Links

Images

Landscapes

  • Selective Calling Equipment (AREA)

Abstract

Изобретение относится к электрорадиотехнике и может использоваться в системе охранной телесигнализации. Способ передачи и приема сигналов по радиоканалу заключается в том, что на n контролируемых пунктах формируют последовательности пачек радиоимпульсов, передают их на общий диспетчерский пункт по радиоканалу через разные для каждого контролируемого пункта периоды следования, которые кратны простым числам, при этом моментами времени начала передачи сигналов с каждого контролируемого пункта являются моменты времени перехода питающего напряжения единой энергосистемы F через ноль. Достигаемый технический результат - повышение скорости передачи. 2 ил.

Description

Изобретение относится к электрорадиотехнике и может найти применение для образования радиоканала, который входит в систему охранной телесигнализации объектов, которыми могут служить дачные участки, гаражи, торговые точки и т. д. , где нет телефонной связи и нет электрических сетей, которые гальванически связаны между контролируемыми пунктами (КП) и общим диспетчерским пунктом (ДП) по линиям (0,38-10-35) кВ. Изобретение решает задачу создания симплексного радиоканала на одной частоте между КП и ДП, причем на КП установлены только передатчики, а на ДП только приемник. Передачу телесигналов (сигналов) с КП осуществляют без запроса с ДП, при этом обеспечивают заданную вероятность потери (трансформации) телесигнала, которую определяет ГОСТ 16521-74.
Известен способ передачи и приема сигналов по проводам трехфазной линии электропередачи, который реализован в устройстве (авт. свид. 1757110, Н 04 В 3/54, 1992 г.) Недостатком данного способа является низкая скорость передачи сигналов и потеря его работоспособности при отсутствии гальванической связи по проводам трехфазной линии электропередачи напряжением (0,38-10-35) кВ между КП и ДП.
Известен также способ передачи сигналов по трехфазной линии электропередачи низкого напряжения, который реализован в устройстве (патент 2122285, 6 Н 04 В 3/54, 1998 г.), который принят за прототип. Несмотря на повышение скорости передачи по сравнению с предыдущим способом, остается недостаток - потеря работоспособности при отсутствии гальванической связи по проводам трехфазной линии электропередачи (0,38-10-35) кВ между КП и ДП.
В заявленном способе, даже при отсутствии гальванической связи по проводам трехфазной линии электропередачи (0,38-10-35) кВ между КП и ДП, работоспособность устройства, реализующего заявленный способ, сохраняется.
Способ передачи и приема сигналов по радиоканалу, в соответствии с которым на n= 1, 2, 3,... (n-1) контролируемых пунктах (КП) формируют сигналы, передают их по каналу на общий диспетчерский пункт (ДП), где производят их прием, на каждом КП формируют последовательность пачек радиоимпульсов (сигналов) на одной частоте, длительностью
Figure 00000002
где F - частота промышленного напряжения единой энергосистемы, где установлены КП, передают эти сигналы по радиоканалу на ДП через разные для каждого КП периоды следования T1, T2, Т3...Тn, где индексы 1, 2, 3,...n обозначают номера КП, при этом T1, T2, Т3...Тn кратны простым числам, определяют
Figure 00000003
где Тср - усредненный период следования сигналов с n КП, Р - заданная вероятность потери (трансформации) сигнала за счет совпадения на ДП сигналов от различных КП в интервале времени Δt = τ, при этом моментами времени начала передачи сигналов с каждого КП являются моменты времени перехода питающего напряжения частоты F через ноль. На фиг.2 обозначены такие моменты времени, которые соответствуют моментам времени t1, t2, t3,... и т.д.
Блок-схема устройства приведена на фиг.1, где
1. линия,
2. передатчик,
3. блок формирования,
4. передающая антенна,
5. приемник,
6. приемная антенна.
Работает устройство следующим образом: передатчики 2 на каждом КП непрерывно передают радиосигналы длительностью τ.
Figure 00000004

где F=50 Гц - частота промышленного напряжения в линии 1 единой энергосистемы, где установлены КП. Радиосигналы передают с каждого КП с разными периодами следования T1, T2, Т3... Тn, где индексы 1, 2, 3,... n обозначают номера КП. Эти периоды следования радиосигналов образуют в блоках формирования 3. Моменты времени начала передачи сигналов с каждого КП являются моментами времени перехода питающего напряжения частоты F в линии 1 через ноль, при этом все КП установлены в единой энергосистеме, где частота F, в любых ее точках одинакова. Радиосигналы передают в двоичном коде с пассивной паузой. Они несут информацию о состоянии коммутационного оборудования, установленного на каждом КП. Эта информация, в виде видеоимпульсов, приходит на информационные входы передатчиков КП фиг.1, где их заполняют высокой частотой и через передающую антенну 4 радиоимпульсы передают на ДП.
На ДП высокочастотные сигналы принимают приемной антенной 6 приемника 5. Высокочастотные сигналы детектируют в приемниках 5 и получают сигналы в виде видеоимпульсов фиг.1, которые поступают на информационный выход приемников 5 для дальнейшей их обработки.
Таким образом, сигналы со всех КП будут распределены на оси времени и их совпадение в интервале времени Δt = τ, будет соответствовать вероятностному закону Пуассона, т.к. соблюдают следующие условия (Е.С. Вентцель Теория вероятностей. М.: "Наука", 1964):
1. Поток событий (сигналов, поступающих с КП) - ординарен.
2. Поток событий - стационарен.
3. Поток событий - не имеет последействия.
Условие ординарности означает, что сигналы от каждого рассредоточенного КП приходят на общий приемник 5 ДП поодиночке, а не парами, тройками и т.д.
Условию стационарности удовлетворяет поток событий, вероятностные характеристики которого не зависят от времени. Для стационарного потока характерна постоянная плотность потока λср- среднее число событий (сигналов), поступающих в приемник 5 ДП в единицу времени.
Figure 00000005

где n - число КП, работающих на один ДП, - постоянная величина;
Figure 00000006
усредненный период следования событий (сигналов) - постоянная величина.
Из (1) следует, что λср = const и означает постоянство событий (сигналов) в ед. времени.
Условие отсутствия последействия означает, что события (сигналы) поступают в систему (на приемник 5 ДП) независимо друг от друга.
Всеми этими тремя, необходимыми и достаточными свойствами, обладает поток событий (сигналов) с рассредоточенных КП, где усредненный период следования Тср постоянен.
Закон Пуассона имеет вид:
Figure 00000007

где m=4 (обоснование будет дано ниже). l - основание натурального логарифма. Р - вероятность совпадения сигналов на интервале времени Δt = τ. В заявленном способе Р - есть вероятность потери (трансформации) сигнала при наложении их друг на друга в приемнике 5 ДП на интервале времени Δt = τ; а - параметр Пуассона, есть математическое ожидание числа сигналов, попадающих на интервал времени Δt = τ.
Figure 00000008

где λср(t) - средняя плотность потока. В данном случае
Figure 00000009

Поэтому решение (3) даст
a = λсрτ (4)
При m=4 выражение (2) примет вид
Figure 00000010

Ниже мы докажем, что а<1, т.е. принимаем значение la≈1 и, при этом условии, выражение (5) примет вид
Figure 00000011

Определим а из (6)
Figure 00000012

С другой стороны, с учетом (1) и (4) имеют
Figure 00000013

Выразим (7) и (8) через Тср
Figure 00000014

где n, τ, Р задают в технических условиях.
Обоснование выбора значений периодов следования сигналов с каждого КП
1. Предположим, что T123=...=Тn. При наложении сигналов от двух КП в точке 1 фиг. 2, приемник 5 ДП эти сигналы не примет. Следует отметить, что эта ситуация будет длиться сколь угодно долго, пока не будет выключен один из передатчиков одного из КП, от которых произошло наложение двух сигналов.
2. Разберем случай, когда на каждом КП имеют свой, отличный от других, период следования сигналов, как это выполнено в данном техническом решении.
При наложении двух сигналов от двух КП в точке 1 фиг.2 приемник 5 ДП эти сигналы не примет. Через промежуток времени Тср эти сигналы разойдутся в связи с разностью периодов следования. Потребуем, чтобы сигналы в точке 2 от других двух передатчиков КП не наложились бы друг на друга, т.е. чтобы в интервале времени Δt = t3-t2.
Фиг. 2, информация на ДП была бы принята приемником 5. Если такое наложение все-таки произойдет, то потребуем, чтобы вероятность наступления такого события была бы равна Р=10-6, т.е. соответствовала ГОСТ 16521-74 на потерю (трансформацию) телесигнала.
Таким образом, в интервале времени Δt = t2-t1, в точках 1 и 2 (фиг.1) допускают по два совпадения импульсов от четырех разных КП, причем вероятность наступления события совпадения двух сигналов в точке 2 (фиг.2) равна: Р= 10-6. Поэтому в выражении (5) принято значение m=4. В результате исследования минимального числа совпадений сигналов от n КП с различными периодами следования, которые были кратны четным числам, нечетным числам, простым числам, было доказано, что наиболее оптимальным решением является кратность периодов следования сигналов с n КП простым числам.
Пример расчета параметров заявленного устройства
Дано: 1. N=100 - количество рассредоточенных КП, работающих на один ДП.
2. τ=0,01 с - длительность передачи радиосигнала от одного КП.
3. Р=10-6 - вероятность попадания в точку 2 фиг.2 двух сигналов от разных КП.
4. τu = 0,1×10-3 - длительность одного радиоимпульса. Значение выбрано из следующих соображений: Государственный комитет по радиочастотам СССР решением от 15.11.78 г. 665 разрешил использовать для разработки и эксплуатации радиотелесигнализации частоты в диапазоне (162.15-168.075) МГц. Исходя из разрешенной полосы излучения, которая была выделена и равна ΔF=20 кГц, длительность радиоимпульса τu/ при этом равна
Figure 00000015

при τ= 0,01 с, и τu = 0,1×10-3. Можно передать 100 Бит информации с каждого КП за время
Figure 00000016
.
Определим из (9) усредненное значение периода следования сигналов с n КП
Figure 00000017

В нашем примере Т будет соответствовать периоду следования сигналов с 50-го КП, т.е. равно Т50.
Определим, сколько полупериодов К=1, 2, 3...n частоты F уложится в периоде следования сигналов Т50
Figure 00000018

где К50 - количество полупериодов, укладывающихся в периоде следования сигналов Т50.
Определим по таблице простых чисел ближайшее простое число к числу 1428. Таким простым числом является число 1427.
Принимаем уточненное значение К50=1427.
Определим по таблице простых чисел для каждого КП свое простое число
Figure 00000019

Определим, с учетом (13), значения периодов следования сигналов, которые будут кратны простым числам для КП от 1, 2, 3... до n из выражения:
Tn = Kn×τ (14)
где Тn - период следования сигналов для n-го КП.
Figure 00000020

F - частота промышленного напряжения в линии 1, n=1, 2, 3... (n-1).
Figure 00000021

Операцию умножения Кn на τ производят в блоках формирования 3 на КП, т. е. в блоках 3 должны быть, свой для каждого КП, счетчик полупериодов частоты F и умножитель.
Проведем проверку правильности допущений, принятых выше:
При выводе (6) мы приняли значение а<1 и считали, что la≈1.
Определим реальное значение а из (7), для рассматриваемого примера:
Figure 00000022

Определим значение la при а=0,069:
la=l0,069=1,07≈1 (18)
Мы доказали, что допущение, принятое нами, было сделано правомерно.
Определим скорость передачи сигналов в заявленном устройстве:
Figure 00000023

где τ= 0,01 с, n= 100, τu = 0,1×10-3 c, Тcp=14,28 с - исходные данные рассматриваемого примера.
Таким образом, мы доказали, что цель, поставленная изобретением, достигнута, при этом получен новый технический результат при передаче сигналов телесигнализации с КП на ДП.
1. На n=1, 2, 3... (n-1) КП имеют только передатчики.
2. На ДП имеют только приемник.
3. Известно, что наибольшая доля стоимости на приемопередающую аппаратуру приходится на приемную часть, которой на КП нет.
4. Несмотря на то, что КП и ДП не имеют между собой двухстороннего канала, устройство способно работать при использовании одной частоты.
5. Повышена скорость передачи сигналов со 100 Бод до 700 Бод.
6. При совпадении сигналов с разных КП на интервале времени Δt = τ, в следующем периоде следования сигналов они разойдутся, т.к. их периоды следования кратны простым числам.

Claims (1)

  1. Способ передачи и приема сигналов по радиоканалу, в соответствии с которым на n= 1, 2, 3, . . . , n контролируемых пунктах формируют сигналы, передают их по каналу связи на общий диспетчерский пункт, где производят их прием, отличающийся тем, что на каждом контролируемом пункте формируют сигналы, которые представляют собой последовательность пачек радиоимпульсов одной частоты длительностью τ, где
    Figure 00000024
    где F - частота промышленного напряжения U(t) единой энергосистемы, где установлены контролируемые пункты, передают эти сигналы по радиоканалу на общий диспетчерский пункт через разные для каждого контролируемого пункта периоды следования Т1, Т2, Т3, . . . , Тn, где индексы 1, 2, 3, . . . , n обозначают номера контролируемых пунктов, при этом Т1, Т2, Т3, . . . , Тn кратны простым числам, моментами времени начала передачи сигналов с каждого контролируемого пункта являются моменты перехода U(t) через ноль, определяют Тср - усредненный период следования сигналов с n контролируемых пунктов по формуле
    Figure 00000025

    где Р - заданная вероятность потери сигналов, передаваемых с контролируемых пунктов, за счет совпадения на общем диспетчерском пункте сигналов от различных контролируемых пунктов в интервале времени Δt = τ,
    при этом выполняют условия
    Figure 00000026

    где К1, К2, . . . , Кср, . . . , Кn - последовательность простых чисел от первого до n-го, определяют Кср из формулы
    Figure 00000027

    где Кср - количество полупериодов частоты F, укладывающихся в усредненном значении Тср, определяют по таблице простых чисел ближайшее простое число к значению Кср, определяют по таблице простых чисел для каждого контролируемого пункта свое простое число К1, К2, . . . , Кn, вычисляют согласно (I) периоды следования для каждого контролируемого пункта Т1, Т2, . . . , Тn, передают с этими периодами сигналы с каждого контролируемого пункта на общий диспетчерский пункт, где производят их прием.
RU2000113642/09A 2000-05-30 2000-05-30 Способ передачи и приема сигналов по радиоканалу RU2186462C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000113642/09A RU2186462C2 (ru) 2000-05-30 2000-05-30 Способ передачи и приема сигналов по радиоканалу

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000113642/09A RU2186462C2 (ru) 2000-05-30 2000-05-30 Способ передачи и приема сигналов по радиоканалу

Publications (2)

Publication Number Publication Date
RU2000113642A RU2000113642A (ru) 2002-03-27
RU2186462C2 true RU2186462C2 (ru) 2002-07-27

Family

ID=20235452

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000113642/09A RU2186462C2 (ru) 2000-05-30 2000-05-30 Способ передачи и приема сигналов по радиоканалу

Country Status (1)

Country Link
RU (1) RU2186462C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447580C2 (ru) * 2007-08-01 2012-04-10 Сони Корпорейшн Способ передачи сигнала по каналу линии электропередач и модем для передачи данных по линии электропередач

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447580C2 (ru) * 2007-08-01 2012-04-10 Сони Корпорейшн Способ передачи сигнала по каналу линии электропередач и модем для передачи данных по линии электропередач

Similar Documents

Publication Publication Date Title
US6094425A (en) Self-adaptive method for the transmission of data, and implementation device
CN106332267B (zh) 基于跳频无线通信的同步接入方法、设备以及系统
US4466096A (en) Apparatus and method for providing transmitter hierarchy control for efficient channel management
KR20000002198A (ko) 양 방향 전력선 통신을 이용한 원격제어장치 및 그 제어방법
CN103944606A (zh) 一种自适应跳频图案的产生方法
CN106454981A (zh) 一种随机跳频方法、通讯设备及随机跳频系统
RU2186462C2 (ru) Способ передачи и приема сигналов по радиоканалу
RU2186461C2 (ru) Устройство передачи и приема сигналов по радиоканалу
JPS6336589B2 (ru)
RU2168862C1 (ru) Способ передачи и приема сигналов
Pan et al. Communication behavior structure mining based on electromagnetic spectrum analysis
RU2280949C2 (ru) Система цагарейшвили с.а. передачи и приема сигналов по радиоканалу
RU2663200C2 (ru) Способ ведения двухсторонней высокоскоростной радиосвязи с эффективным использованием радиочастотного спектра в ведомственной системе связи
US4628503A (en) Method and device for performing a bus request and collective acknowledgement in a process bus system
US2617872A (en) Frequency signaling system
US1917294A (en) Remote control system
US3953677A (en) Key signaling system with multiple pulse generators
RU2224371C2 (ru) Симплексный способ передачи и приема сигналов гутина к.и. по трехфазным электрическим сетям
SU824261A1 (ru) Устройство дл телеуправлени иТЕлЕСигНАлизАции пО СилОВыМРАСпРЕдЕлиТЕльНыМ СЕТ М
RU2266615C2 (ru) Система гутина к.и. передачи и приема сигналов по трехфазным электрическим сетям
RU2266616C2 (ru) Система цагарейшвили с.а. передачи и приема сигналов по трехфазным электрическим сетям
Rajba et al. Wireless sensor convergecast based on random operations procedure
Hooijen A robust system for digital data transmission over the low voltage network Using spread spectrum techniques
SU720464A1 (ru) Устройство дл передачи и приема сигналов
RU2650191C1 (ru) Ведомственная система двухсторонней высокоскоростной радиосвязи с эффективным использованием радиочастотного спектра

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20020531