RU2184954C2 - Способ неразрушающего контроля теплофизических характеристик твердых материалов - Google Patents

Способ неразрушающего контроля теплофизических характеристик твердых материалов Download PDF

Info

Publication number
RU2184954C2
RU2184954C2 RU2000123037A RU2000123037A RU2184954C2 RU 2184954 C2 RU2184954 C2 RU 2184954C2 RU 2000123037 A RU2000123037 A RU 2000123037A RU 2000123037 A RU2000123037 A RU 2000123037A RU 2184954 C2 RU2184954 C2 RU 2184954C2
Authority
RU
Russia
Prior art keywords
heater
temperature
thermal
heat
circumference
Prior art date
Application number
RU2000123037A
Other languages
English (en)
Other versions
RU2000123037A (ru
Inventor
М.Г. Клебанов
В.В. Обухов
Т.А. Фесенко
Original Assignee
Тамбовский военный авиационный инженерный институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тамбовский военный авиационный инженерный институт filed Critical Тамбовский военный авиационный инженерный институт
Priority to RU2000123037A priority Critical patent/RU2184954C2/ru
Application granted granted Critical
Publication of RU2184954C2 publication Critical patent/RU2184954C2/ru
Publication of RU2000123037A publication Critical patent/RU2000123037A/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к области теплофизических измерений. На теплоизолированной поверхности исследуемого материала размещают источник тепла в виде окружности. На поверхность исследуемого материала воздействуют тепловыми импульсами равной энергии, подаваемыми в моменты наступления заданных соотношений температур в точках размещения термодатчиков. Частоту следования тепловых импульсов и температуру в одной из контрольных точек в момент окончания тепловых испытаний регистрируют и на основании этих данных по формулам, приведенным в описании, рассчитывают ТФХ исследуемого материала. Технический результат изобретения - повышение точности. 4 ил.

Description

Предлагаемое изобретение относится к области теплофизических измерений и может быть использовано для определения теплофизических характеристик материалов.
Известен способ неразрушающего контроля теплофизических характеристик (ТФХ), при котором осуществляют импульсное тепловое воздействие по прямой линии на теплоизолированную поверхность исследуемого материала (изделия) и фиксируют момент времени, когда отношение избыточных температур в двух разноотстоящих от источника точках поверхности материала достигнет наперед заданного значения (авторское свидетельство 834480 СССР, МКИ G 01 N 25/18, 1979).
Недостатком этого способа является сравнительно малая точность определения ТФХ из-за низкой избыточной температуры в контрольных точках.
Известен способ контроля ТФХ, заключающийся в импульсном тепловом воздействии по прямой линии на теплоизолированную поверхность исследуемого материала с последующей регистрацией момента наступления равенства избыточной температуры на заданном расстоянии от линии действия источника, и разницы между температурой на линии действия источника и на заданном расстоянии от нее, на поверхности исследуемого материала (авторское свидетельство 1728755 СССР, МКИ G 01 N 25/18, 1992).
Недостатком этого способа является относительно высокая погрешность определения теплофизических коэффициентов исследуемого материала, обусловленная низкой избыточной температурой в точке, удаленной от линии действия источника тепла.
В известном техническом решении, наиболее близком к предлагаемому (авторское свидетельство 1728755 СССР, МКИ G 01 N 25/18, 1992), на теплоизолированной поверхности исследуемого материала устанавливают линейный источник тепла, осуществляют многократное импульсное тепловое воздействие на поверхность этого материала и измеряют температуру на линии действия источника тепла и на заданном расстоянии от этой линии. Подачу тепловых импульсов осуществляют в моменты времени, когда соотношения измеряемых температур соответствуют заданному ряду чисел.
Недостатком этого способа также является сравнительно большая погрешность определения ТФХ из-за низкой избыточной температуры в точке, удаленной от источника тепла.
Техническим результатом предлагаемого изобретения является повышение точности определения ТФХ за счет увеличения избыточной температуры в точках размещения термодатчиков.
Сущность предлагаемого способа состоит в многократном импульсном тепловом воздействии на теплоизолированную поверхность исследуемого материала нагревателем в виде окружности и регистрации частоты следования тепловых импульсов, подаваемых в моменты достижения заданных соотношений избыточных температур в точках размещения термодатчиков.
На теплоизолированной поверхности исследуемого материала размещают нагреватель в виде окружности радиуса r и два термодатчика (термопары) Тп1 и Тп2, регистрирующие соответственно температуры T1(τ) и T2(τ). Термопару Тп1 располагают на окружности нагревателя, а термопару Тп2 - в центре окружности. В момент начала тепловых испытаний τ = 0 нагреватель импульсно выделяет энергию Q из расчета на единицу длины нагревателя, после чего регистрируют момент наступления равенства отношения T1(τ)/T2(τ) заданной величине h1 и подают второй тепловой импульс. Третий тепловой импульс подают в момент наступления равенства T1(τ)/T2(τ)=h2 и т.д. Всего подают N тепловых импульсов.
Величины hi (i=1,2,...,N) рассчитывают по формуле:
Figure 00000002

где z - заданная постоянная.
Расчет величин hi в соответствии с выражением (1) позволяет обеспечить постоянный период следования тепловых импульсов τ0, зависящий от ТФХ исследуемого материала. В процессе контроля регистрируют частоту следования тепловых импульсов F = 1/τ0.
На основании полученных данных коэффициент температуропроводности находят из соотношения:
Figure 00000003

а коэффициент теплопроводности определяется равенством:
Figure 00000004

где Q - количество теплоты, выделяемое единицей длины нагревателя; r - радиус окружности нагревателя; F - частота следования тепловых импульсов; N - количество подаваемых тепловых импульсов; z - заданная постоянная; Т2 - температура в точке размещения термодатчика Тп2 в момент наступления равенства T1(τ)/T2(τ) = hN.
С учетом (2) можно записать
Figure 00000005

Если известно, что коэффициент температуропроводности исследуемого материала находится в пределах от amin до amax, то на oсновании (4) можно определить наибольший и наименьший периоды следования тепловых импульсов τ0min = r2/(4amax•z) и τ0max = r2/(4amin•z) и наибольшее время проведения тепловых испытаний, которое составит τmax = N•τ0max или
Figure 00000006

где N - число подаваемых тепловых импульсов; r - радиус окружности нагревателя; z - заданная постоянная; аmin - минимальное значение коэффициента температуропроводности исследуемого материала.
Исходя из вышесказанного выбор z целесообразно производить с учетом диапазона ТФХ материалов, для которых проводятся испытания, и требований оперативности контроля.
На фиг.1 показана схема размещения на поверхности исследуемого материала нагревателя в виде окружности и термодатчиков.
При подаче одного теплового импульса от линейного нагревателя избыточная температура на линии нагрева определяется выражением
Figure 00000007

а на расстоянии r от линии нагрева
Figure 00000008

где Q - количество теплоты, выделяемое единицей длины источника тепла; τ - текущее время; λ и а - соответственно коэффициенты тепло- и температуропроводности исследуемого материала.
При использовании нагревателя в виде окружности радиуса r температура в точке окружности будет описываться соотношением
Figure 00000009

а в центре окружности
Figure 00000010

При расчете температуры с учетом конечной длительности теплового импульса используют выражение
Figure 00000011

где τи - длительность теплового импульса; T(r,τ) - температура, определяемая в зависимости от формы источника тепла соотношениями (6)-(9).
При проведении тепловых испытаний температура на линии нагрева в момент подачи теплового импульса не должна превышать максимально допустимую температуру Тmax, при которой происходит деструкция исследуемого материала. Это достигается ограничением мощности нагрева (энергии теплового импульса). Расчеты, проведенные на основании (6), (8) и (10), показывают, что при нагреве по окружности температура в момент подачи теплового импульса на линии нагрева существенно ниже, чем при нагреве вдоль прямой линии, если прочие условия одинаковы и радиус окружности не стремится к нулю. Т. е. для достижения температуры Тmax при нагреве по окружности удельная мощность нагрева (мощность единицы длины нагревателя) Рокр должна быть выше, чем мощность Рлин при нагреве вдоль прямой линии. Если нагрев по окружности осуществлять с удельной мощностью Рокр, в К (К>1) раз превышающей Рлин, то соответственно в К раз увеличатся температуры T1(τ) и T2(τ) в точках размещения термопар. Таким образом использование нагревателя в виде окружности позволяет обеспечить более высокие по сравнению с линейным источником тепла избыточные температуры в точках размещения термопар без нарушения физической целостности исследуемого материала, что в свою очередь приводит к повышению точности контроля ТФХ за счет снижения влияния случайной составляющей погрешности определения температуры. Аналогичным образом можно показать, что это утверждение справедливо и при использовании источника тепла в виде осесимметричной петли.
На фиг. 2 представлены графики изменения температур на линиях действия нагревателя в виде прямой (линия 1) и нагревателя в виде окружности радиуса r (линия 2) при одинаковой удельной мощности нагрева Рлинокр=20 Вт/м; длительности теплового импульса τи = 0.1 c; r=2.5•10-3 м; λ = 0.26 Дж/(м•К•с); а=3.5•10-6 м2/с, построенные с учетом равенств (6), (8) и (10).
На фиг. 3 аналогичные графики приведены для случая, когда удельная мощность нагревателя в виде окружности в К раз превосходит удельную мощность линейного нагревателя, за счет чего обеспечивается одинаковая избыточная температура в момент подачи теплового импульса (Рлин=20 Вт/м, Рокр=К•Рлин, К=19.1).
На фиг. 4 представлены графики изменения температур на расстоянии r от линейного нагревателя, удельной мощности Рлин=20 Вт/м (линия 3) и в центре нагревателя в виде окружности радиуса r и удельной мощности Рокр=К•Рлин (линия 4).

Claims (1)

  1. Способ неразрушающего контроля теплофизических характеристик твердых материалов, включающий в себя многократное импульсное тепловое воздействие на теплоизолированную поверхность исследуемого материала и регистрацию частоты следования тепловых импульсов, подаваемых в моменты наступления заданных соотношений температур в двух контрольных точках поверхности исследуемого материала, отличающийся тем, что используют нагреватель в виде окружности и два термодатчика, регистрирующие температуру на окружности нагревателя и в ее центре, а коэффициенты тепло- и температуропроводности рассчитывают соответственно по формулам
    Figure 00000012

    Figure 00000013

    где Q - количество теплоты, выделяемое единицей длины нагревателя;
    r - радиус окружности нагревателя;
    z - заданная постоянная;
    N - количество подаваемых тепловых импульсов;
    F - регистрируемая частота следования тепловых импульсов;
    Т2 - температура в центре окружности нагревателя в момент окончания тепловых испытаний.
RU2000123037A 2000-09-04 2000-09-04 Способ неразрушающего контроля теплофизических характеристик твердых материалов RU2184954C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000123037A RU2184954C2 (ru) 2000-09-04 2000-09-04 Способ неразрушающего контроля теплофизических характеристик твердых материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000123037A RU2184954C2 (ru) 2000-09-04 2000-09-04 Способ неразрушающего контроля теплофизических характеристик твердых материалов

Publications (2)

Publication Number Publication Date
RU2184954C2 true RU2184954C2 (ru) 2002-07-10
RU2000123037A RU2000123037A (ru) 2002-08-20

Family

ID=20239758

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000123037A RU2184954C2 (ru) 2000-09-04 2000-09-04 Способ неразрушающего контроля теплофизических характеристик твердых материалов

Country Status (1)

Country Link
RU (1) RU2184954C2 (ru)

Similar Documents

Publication Publication Date Title
Gatowski et al. An experimental investigation of surface thermometry and heat flux
US4848147A (en) Thermal transient anemometer
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
Kotov et al. Performance assessment of thermoelectric detector for heat flux measurement behind a reflected shock of low intensity
US20050078732A1 (en) Device and method for measuring absorbed heat flux in a fire test apparatus
RU2184954C2 (ru) Способ неразрушающего контроля теплофизических характеристик твердых материалов
JPS6250652A (ja) 熱拡散率の測定方法およびその測定装置
Park et al. A new method for measuring time constants of a thermocouple wire in varying flow states
RU2192000C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
Starostin et al. Digital device for thermophysical measurements by wire probe
RU2149389C1 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2184953C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2149387C1 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2150695C1 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2150694C1 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2149388C1 (ru) Способ контроля теплофизических характеристик материалов
Longo A steady-state apparatus to measure the thermal conductivity of solids
Budwig et al. A new method for in situ dynamic calibration of temperature sensors
RU2797135C1 (ru) Способ термоанемометрии газового потока и термоанемометр на его основе
RU2181199C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2184952C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2149386C1 (ru) Способ определения теплофизических характеристик материалов
RU2556290C1 (ru) Способ определения теплофизических свойств твердых материалов
RU2179717C2 (ru) Способ неразрушающего контроля теплофизических характеристик материалов
RU2018117C1 (ru) Способ комплексного определения теплофизических свойств материалов