RU2182100C2 - Воздушный винт - Google Patents

Воздушный винт Download PDF

Info

Publication number
RU2182100C2
RU2182100C2 RU2000100011A RU2000100011A RU2182100C2 RU 2182100 C2 RU2182100 C2 RU 2182100C2 RU 2000100011 A RU2000100011 A RU 2000100011A RU 2000100011 A RU2000100011 A RU 2000100011A RU 2182100 C2 RU2182100 C2 RU 2182100C2
Authority
RU
Russia
Prior art keywords
torsion
torsion bars
blade
plates
screw
Prior art date
Application number
RU2000100011A
Other languages
English (en)
Other versions
RU2000100011A (ru
Inventor
В.И. Пивоваров
Original Assignee
Пивоваров Вячеслав Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пивоваров Вячеслав Иванович filed Critical Пивоваров Вячеслав Иванович
Priority to RU2000100011A priority Critical patent/RU2182100C2/ru
Publication of RU2000100011A publication Critical patent/RU2000100011A/ru
Application granted granted Critical
Publication of RU2182100C2 publication Critical patent/RU2182100C2/ru

Links

Images

Landscapes

  • Springs (AREA)

Abstract

Изобретение относится к авиационной технике, в частности к устройству бесшарнирных несущих и рулевых винтов вертолетов. Воздушный винт с изменяемым шагом лопастей содержит лопасти, соединенные с валом винта при помощи упругих на изгиб и кручение торсионов. Каждый из торсионов выполнен на участке между лопастью и валом в виде слоистой балки. Торсион состоит из набора по толщине силовых пластин с высокой прочностью материала, соединенных между собой эластичными прослойками из материала с низким сопротивлением сдвигу. При этом в заделке со стороны лопасти силовые пластины соединены между собой жестко материалом с высокой прочностью, а в заделке со стороны оси вращения винта силовые пластины соединены между собой жестко или жесткая заделка наружных пластин торсионов отсутствует. Такое выполнение воздушного винта обеспечит возможность широкого изменения изгибных и крутильных жесткостей при их оптимальных соотношениях. 6 з.п.ф-лы, 20 ил.

Description

Изобретение относится к области авиационной техники, в частности - к устройству несущих и рулевых винтов вертолетов.
Изобретение также может быть использовано в других воздушных винтах с изменяемым шагом, в конструкции роторов ветродвигателей и винтовентиляторов, а также в других областях техники, где необходима гибкая связь между двумя твердыми телами, например - в виде упругих элементов шасси различных видов транспорта или в виде упругих муфт.
Известен винт, лопасти которого соединены с валом при помощи упругих на изгиб и кручение торсионов - патент Франции N 2041747, кл. В 64 С 27/00. В этом винте упругая средняя по длине (рабочая) часть торсиона состоит из продольно расположенных отдельных пучков высокопрочных волокон, соединенных между собой эластичным материалом с низким сопротивлением сдвигу. Недостатком этой конструкции является низкая изгибная жесткость торсиона при поперечном изгибе, то есть при действии перерезывающих сил. Это может привести к выбору неоптимальных соотношений размеров торсиона, к завышенному весу конструкции, в частности - для случая свеса лопасти на стоянке, а также к нарушению передаточных соотношений между отклонениями органов управления и изменениями углов установки лопастей при воздействиях на торсионы перерезывающих сил от поводков лопастей и от самих лопастей.
Техническая задача, решаемая предлагаемым изобретением, состоит в разработке конструкции торсиона с возможностью широкого изменения изгибных и крутильных жесткостей при их оптимальных соотношениях, в снижении веса конструкции винта, в улучшении управления лопастями винта.
Сущность предлагаемого изобретения заключается в том, что в воздушном винте, содержащем вал, лопасти, втулку с элементами управления шагом лопастей и упругими на изгиб и кручение торсионами, соединяющими лопасти с корпусом втулки (ступицей) или непосредственно с валом, или соединяющие лопасти между собой и с валом, каждый из торсионов выполнен в виде слоистой балки и на участке между лопастью и валом состоит из набора по толщине силовых пластин из высокопрочного материала, соединенных между собой эластичными прослойками из материала с низким сопротивлением сдвигу, а по концам торсиона, в заделках, все силовые пластины или их часть соединены между собой жестко материалом с высокой прочностью. Кроме того, предусмотрено, что в зонах перехода от рабочей части торсионов к их концевым заделкам эластичные прослойки имеют переменные размеры по ширине и длине для различных прослоек, а также то, что силовые пластины на рабочем участке и в зонах перехода к заделкам имеют продольные прорези. Предусматривается также то, что силовые пластины выполнены из анизотропного материала. К отличительным особенностям изобретения относится также возможность выполнения групп (пары, тройки и т. д. ) торсионов или всех торсионов одного винта как одно целое, а также возможность отсутствия жесткой заделки наружных пластин всех торсионов одного винта со стороны оси вращения винта, то есть объединение рабочих частей всех торсионов в одну общую рабочую часть. Кроме того, предусмотрено выполнение торсиона за одно целое с лопастью.
На фиг.1 показан воздушный винт с жестким креплением торсиона к корпусу втулки и к лопасти, вид сбоку; на фиг.2 - то же, вид сверху; на фиг.3 - сечение А-А на фиг.1; на фиг.4 - 6 - некоторые из возможных сечений А-А на фиг. 1; на фиг.7 - вариант конструкции воздушного винта в четырехлопастной конфигурации, у которого каждая пара (группа) торсионов выполнена как одно целое, но с отдельными рабочими частями, вид сбоку; на фиг.8 - то же, вид сверху; на фиг. 9 - сечение Б-Б на фиг.7; на фиг.10 - воздушный винт, каждый торсион которого выполнен как одно целое с лопастью, вид сбоку; на фиг.11 - то же, вид сверху; на фиг.12, фиг.13, фиг.14 - сечения В-В, Г-Г, Д-Д на фиг. 10 соответственно; на фиг.15 - воздушный винт в двухлопастной конфигурации, у которого отсутствует жесткая заделка наружных пластин торсионов со стороны оси вращения, два торсиона выполнены как одно целое и рабочая часть двух торсионов является общей, вид сбоку; на фиг.16 - то же, вид сверху; на фиг. 17 - сечение Е-Е на фиг.15; на фиг.18 - воздушный винт в трехлопастной конфигурации, у которого отсутствует жесткая заделка наружных пластин торсионов со стороны оси вращения, три торсиона выполнены как одно целое и рабочая часть трех торсионов является общей, вид сбоку; на фиг.19 - то же, вид сверху; на фиг.20 - сечение Ж-Ж на фиг.18.
Воздушный винт, в частности - несущий винт вертолета, состоит из корпуса 1 втулки, торсионов 2, соединенных с корпусом 1 болтами 3, переходников 4, стыкующих между собой лопасти 5 и торсионы 2 болтами 6 и 7, и поводков 8 управления лопастями, соединенных с торсионами 2 и переходниками 4 также болтами 6.
Для уменьшения статических нагрузок на элементы конструкции винта оси торсионов 2 могут быть смещены на величину В в плоскости вращения и на угол К начальной конусности в вертикальной плоскости (плоскости взмаха).
Торсион 2 имеет в рабочей части поперечное сечение, состоящее из набора по толщине силовых пластин 9, выполненных из материала с высокой прочностью, соединенных между собой эластичными прослойками 10 из материала с низким сопротивлением сдвигу. Эластичные прослойки 10 расположены по длине торсиона 2 на его среднем (рабочем) участке L, а в местах стыковки торсиона 2 с корпусом 1 втулки и переходником 4 место эластичных прослоек 10 занимает высокопрочный материал, например, такой же, из которого выполнены силовые пластина 9.
Рабочая часть L торсиона 2 может иметь по длине как постоянное, так и переменное сечение. Также для одного торсиона 2 его силовые пластины 9 и эластичные прослойки 10 могут иметь по длине как постоянное, так и переменное сечение. В частности, на концах торсиона 2, в зонах перехода от рабочей части L к заделкам, специально подобранные изменения по длине торсиона 2 размеров силовых пластин 9 и эластичных прослоек 10 сглаживают характерный для этих мест скачок жесткостей и напряжений.
Для снижения крутильной жесткости торсионов 2 их силовые пластины 9 на рабочем участке L и в зонах перехода к заделкам могут иметь продольные прорези Р. Прорези Р могут также иметь по длине торсиона постоянное или переменное сечение и переменную длину для разных пластин 9 одного торсиона 2. Разные пластины 9 одного торсиона 2 могут иметь и разное количество прорезей Р. Прорези Р могут быть заполнены эластичным материалом, аналогичным материалу прослоек 10 или не заполнены ничем вовсе.
В целях обеспечения наилучшего соотношения изгибных и крутильных жесткостей рабочей части L торсиона 2, а также для повышения технологичности конструкции, силовые пластины 9 торсиона 2 могут быть выполнены из анизотропного композиционного материала.
Для устранения высоконагруженного стыка лопасти 5 через переходник 4 с торсионом 2 и, как следствие, снижения веса конструкции лопасть 5 может быть выполнена как единое целое с торсионом 2. На фиг.10, 11, 12, 13, 14 показан вариант конструкции такого винта. В этом варианте материал лопасти 5 является продолжением материала силовых пластин 9 ее торсиона 2, при этом внутренняя часть торсиона 2, показанная в виде вкладыша 12, может изготавливаться как отдельно с последующим неразъемным соединением с лопастью, так и в едином процессе формования лопасти 5.
Для снижения жесткости торсионов на изгиб в плоскости взмаха лопасти винта жесткая заделка наружных силовых пластин торсиона со стороны вала 11 винта может отсутствовать. В этом случае все торсионы одного винта выполняются как одно целое, и деформации всех торсионов происходят совместно, то есть рабочие части всех торсионов объединяются в одну общую рабочую часть. Такие варианты конструкций винта представлены на фиг.15, 16, 17, 18, 19, 20. В показанных вариантах выполненные как одно целое торсионы 2 крепятся непосредственно к валу винта 11.
Необходимость использования тех или иных вышеперечисленных особенностей конструкции торсианов определяется при проектировании винта в процессе выбора различных параметров его элементов.
Изменение углов установки (шага) каждой лопасти может осуществляться с применением известных элементов управления, с различным соединением этих элементов с втулкой и лопастью.
Так, например, на фиг.1 и фиг.2 показан винт, у которого управление шагом каждой лопасти осуществляется при помощи поводка 8, жестко соединенного с наружном концом торсиона 2.
На фиг.7 и фиг.8 изображен винт с управлением шагом каждой лопасти 5 при помощи кожуха (полой трубы) 13, соединенного с внутренним и наружным концами торсиона 2 при помощи трех шаровых шарниров 14, 15, 16, имеющих возможность движения в необходимых пределах вдоль осей своих опорных пальцев 17, 18, 19. Такая подвеска кожуха 13 исключает работу кожуха на изгиб при изгибно-крутильных деформациях торсиона, и кожух работает только на кручение.
На фиг. 10 и фиг.11 показан винт, у которого каждая лопасть 5 выполнена как единое целое с ее торсионом 2, а кожух 13 управления шагом лопасти соединен с наружным концом (заделкой) торсиона 2 жестко, двумя болтами 20, а с внутренним концом торсиона 2 кожух 13 соединен при помощи шаровой опоры 14, имеющей возможность движения вдоль оси своего опорного пальца 17.
На фиг. 15 и фиг.16 представлен винт, у которого роль кожуха управления выполняет комлевая часть лопасти 5, жестко соединенная с наружным концом торсиона 2 при помощи болтов 21.
На фиг. 18 и фиг.19 показана конструкция винта с установкой кожуха 13 управления шагом лопасти аналогично конструкции на фиг.10 и фиг.11, при этом кожух 13 выполняет еще и роль переходника лопасти, то есть лопасть 5 крепится непосредственно к кожуху 13 болтами 22.
Наличие тех или иных элементов управления шагом лопастей, а также схем их закрепления в конструкции винта определяется при проектировании винта в процессе выбора его параметров.
Воздушный винт работает следующим образом.
При полете вертолета его несущий винт находится в неравномерном скошенном потоке воздуха, и лопасти 5 винта совершают маховые движения в вертикальной и горизонтальной плоскостях, то есть в плоскостях взмаха и вращения. При действии системы управления лопасти 5 винта меняют свои углы установки. Во время работы винта торсионы 2 воспринимают нагрузки от лопастей 5 и передают на лопасти крутящий момент от вала 11 винта.
При маховом движении необходимая подвижность лопастей 5 обеспечивается соответствующим выбором жесткостей торсионов 2 в плоскостях взмаха и вращения.
Возможность изменения углов установки лопастей 5 путем закручивания торсионов 2 через элементы управления достигается тем, что при кручении торсиона 2 силовые пластины 9, соединенные между собой эластичными прослойками 10, имеют возможность сдвига одна относительно другой, так как эластичные прослойки выполнены из материала с низким сопротивлением сдвигу, например - из резины.
Устойчивость силовых пластин 9 при изгибе торсиона в сжатой зоне достигается тем, что эластичные прослойки 10, соединенные с силовыми пластинами по всей поверхности, не дают им выпучиваться (терять устойчивость), и торсион 2 при изгибе работает как одно целое. Потерю устойчивости крайних ветвей торсиона 2 от изгиба при большом количестве продольных прорезей Р в рабочей части предотвращает заполнение прорезей Р эластичным материалом, соединяющим силовые пластины 9 смежных ветвей, или выполнение в разных силовых пластинах 9 одного торсиона 2 разного количества прорезей Р.
При изгибах торсиона 2 благодаря сдвигу силовых пластин 9 за счет эластичных прослоек 10 деформации каждой пластины распределяются на всю ее длину, что снижает напряжения в пластине, повышает усталостную прочность торсиона 2 и ресурс конструкции винта в целом.
Технический эффект изобретения заключается в простоте конструкции воздушного винта, малом весе, небольшом количестве деталей, малом лобовом сопротивлении ненесущих элементов, минимальных затратах на производство и техническое обслуживание. Разделение рабочей части торсионов на множество параллельно работающих силовых пластин и применение анизотропных композиционных материалов для изготовления силовых пластин повышает надежность и безопасность конструкции воздушного винта.

Claims (7)

1. Воздушный винт с изменяемым шагом лопастей, включающий в себя лопасти, соединенные с валом винта при помощи упругих на изгиб и кручение торсионов, элементы управления шагом каждой лопасти, отличающийся тем, что каждый из торсионов выполнен на участке между лопастью и валом в виде слоистой балки и состоит из набора по толщине силовых пластин с высокой прочностью материала, соединенных между собой эластичными прослойками из материала с низким сопротивлением сдвигу, а по концам торсиона в заделке со стороны лопасти силовые пластины соединены между собой жестко материалом с высокой прочностью, а в заделке со стороны оси вращения винта силовые пластины соединены между собой жестко или жесткая заделка наружных пластин торсионов отсутствует.
2. Воздушный винт по п. 1, отличающийся тем, что в зонах перехода от средней части торсионов к их концевым заделкам эластичные прослойки имеют переменные размеры по ширине и длине для различных прослоек.
3. Воздушный винт по п. 1 или 2, отличающийся тем, что торсионы на среднем рабочем участке и в зонах перехода от средней части к их концевым заделкам имеют в силовых пластинах продольные прорези.
4. Воздушный винт по любому из пп. 1-3, отличающийся тем, что силовые пластины торсионов выполнены из анизотропного материала.
5. Воздушный винт по любому из пп. 1-4, отличающийся тем, что лопасти винта выполнены как единое целое с торсионами, при этом материал лопасти является продолжением материала высокопрочных пластин ее торсиона.
6. Воздушный винт по любому из пп. 1-4, отличающийся тем, что группы торсионов или все торсионы одного винта выполнены как одно целое.
7. Воздушный винт по любому из пп. 1-4 или 6, отличающийся тем, что рабочая часть всех торсионов является общей.
RU2000100011A 2000-01-05 2000-01-05 Воздушный винт RU2182100C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000100011A RU2182100C2 (ru) 2000-01-05 2000-01-05 Воздушный винт

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000100011A RU2182100C2 (ru) 2000-01-05 2000-01-05 Воздушный винт

Publications (2)

Publication Number Publication Date
RU2000100011A RU2000100011A (ru) 2001-10-27
RU2182100C2 true RU2182100C2 (ru) 2002-05-10

Family

ID=20228988

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000100011A RU2182100C2 (ru) 2000-01-05 2000-01-05 Воздушный винт

Country Status (1)

Country Link
RU (1) RU2182100C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131479A1 (ru) * 2008-04-21 2009-10-29 Polovinkin Boris Andreevich Автожир с вертикальным взлетом и вертикальной посадкой
RU2448020C1 (ru) * 2010-10-12 2012-04-20 Николай Евгеньевич Староверов Вертолетный винт
WO2015094020A3 (ru) * 2013-12-20 2015-08-13 Андрей Геннадьевич БОРМОТОВ Конвертоплан с реактивным приводом роторов, управляемый роторами посредством автоматов перекоса, через рычаги управления, не требующий дополнительных средств управления

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131479A1 (ru) * 2008-04-21 2009-10-29 Polovinkin Boris Andreevich Автожир с вертикальным взлетом и вертикальной посадкой
CN102066197A (zh) * 2008-04-21 2011-05-18 鲍里斯·安德烈耶夫·博罗维京 垂直起降旋翼机
CN102066197B (zh) * 2008-04-21 2014-02-12 鲍里斯·安德烈耶夫·博罗维京 垂直起降旋翼机
RU2448020C1 (ru) * 2010-10-12 2012-04-20 Николай Евгеньевич Староверов Вертолетный винт
WO2015094020A3 (ru) * 2013-12-20 2015-08-13 Андрей Геннадьевич БОРМОТОВ Конвертоплан с реактивным приводом роторов, управляемый роторами посредством автоматов перекоса, через рычаги управления, не требующий дополнительных средств управления

Similar Documents

Publication Publication Date Title
US3880551A (en) Rotary head assembly for rotary wing aircraft
US3669566A (en) Rotor construction
EP0700350B1 (en) A flexbeam for a helicopter bearingless main rotor assembly
EP0830286B1 (en) A hybrid composite flexbeam for a helicopter bearingless main rotor assembly
US4616977A (en) Hubless, hingeless and bearingless helicopter rotor system
US9718542B2 (en) Blade attachment for a bearingless rotor of a helicopter
US3765267A (en) Connecting element between two members enabling them to rotate in relation to one another in three axes
EP2832640B1 (en) Composite flexure for tiltrotor rotor system
CA1102774A (en) Laminated composite rotor yoke
US4746272A (en) Lobed composite flexbeam
US5096380A (en) Composite flexbeam for a bearingless helicopter rotor
WO1994027866A9 (en) A flexbeam for a helicopter bearingless main rotor assembly
US9714579B2 (en) Connection joint for attaching an airfoil blade to a helicopter's bearingless main rotor
US4222709A (en) Variable-pitch rotor, specially for a rotary-wing aircraft
US5562416A (en) Helicopter rotor blade mounting assembly
RU2349504C1 (ru) Воздушный винт
EP2949579B1 (en) Flexbeam unit with at least one twisted flexbeam element
US9623963B2 (en) Partly cruciform flexbeam and method of manufacturing such a flexbeam
RU2182100C2 (ru) Воздушный винт
US4874292A (en) Apparatus for damping helicopter rotor blade oscillations
US3701612A (en) Rotor hub and blade attachments
US20130034443A1 (en) Planar flexbeam unit
KR100575841B1 (ko) 고유진동수 조절이 용이한 무베어링 로터 시스템용 십자형단면의 복합재 플렉스 빔
US10967965B2 (en) Elastic flapping hinge for connecting a rotor blade to a rotor hub of a rotary wing aircraft
CN115916641A (zh) 用于能够悬停的航空器的旋翼

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20070925

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190106