RU2175873C2 - Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации - Google Patents

Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации Download PDF

Info

Publication number
RU2175873C2
RU2175873C2 RU98102083/14A RU98102083A RU2175873C2 RU 2175873 C2 RU2175873 C2 RU 2175873C2 RU 98102083/14 A RU98102083/14 A RU 98102083/14A RU 98102083 A RU98102083 A RU 98102083A RU 2175873 C2 RU2175873 C2 RU 2175873C2
Authority
RU
Russia
Prior art keywords
light
abrasive particles
radiation
materials
biological tissues
Prior art date
Application number
RU98102083/14A
Other languages
English (en)
Other versions
RU98102083A (ru
Inventor
Г.Б. Альтшулер
А.В. Беликов
Original Assignee
Альтшулер Григорий Борисович
Беликов Андрей Вячеславович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альтшулер Григорий Борисович, Беликов Андрей Вячеславович filed Critical Альтшулер Григорий Борисович
Priority to RU98102083/14A priority Critical patent/RU2175873C2/ru
Priority to US09/381,773 priority patent/US6558372B1/en
Priority to AU24437/99A priority patent/AU2443799A/en
Priority to PCT/RU1999/000016 priority patent/WO1999037363A1/ru
Priority to EP99903966A priority patent/EP0976421A4/en
Publication of RU98102083A publication Critical patent/RU98102083A/ru
Application granted granted Critical
Publication of RU2175873C2 publication Critical patent/RU2175873C2/ru
Priority to US10/408,408 priority patent/US7048731B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C1/00Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
    • A61C1/0046Dental lasers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • A61C3/025Instruments acting like a sandblast machine, e.g. for cleaning, polishing or cutting teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0042Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/08Devices for generating abrasive blasts non-mechanically, e.g. of metallic abrasives by means of a magnetic field or by detonating cords
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0644Handheld applicators

Abstract

В способе обработки материалов, который может применяться преимущественно в медицине для обработки биологических тканей, используется энергия светового излучения и индуцированная этим излучением кинетическая энергия абразивных частиц. Вещества абразивных частиц или оболочки, в которую заключены эти частицы, обладают высоким коэффициентом поглощения облучающего светового потока. Время облучения частицы и плотность энергии светового излучения в зоне обработки обеспечивают быстрое испарение части объема частицы или части поглощающей оболочки. Устройство для осуществления данного способа снабжено резервуаром абразивных частиц, средствами доставки светового излучения и абразивных частиц к зоне обработки. Блок управления обеспечивает дозированные и различные режимы облучения в зависимости от вида обработки. Технический результат - максимальное и дозированное использование энергии излучения и энергии частиц. 2 с. и 21 з.п. ф-лы, 14 ил.

Description

Изобретение относится к технике обработки материалов и медицинской технике и может быть использовано при обработке материалов, в стоматологии, ортопедии, хирургии, дерматологии и других областях медицины для удаления и рассечения твердых и мягких материалов и биотканей, а также для модификации свойств поверхности твердых и мягких материалов и биотканей.
Известна обработка твердых тканей зуба с использованием совместного воздействия на биоткань абразивных частиц и лазерного излучения. При этом пневматическая система формирует насыщенную абразивным материалом газовую струю, направляемую на объект во рту пациента (патент США N 5334016, МПК A 61 C 3/00, опубл. 02.08.94 г.). Недостатком этого способа является необходимость доставки по трубопроводу абразивных частиц с очень высокой скоростью, что связано с существенной потерей энергии частиц. При этом непосредственно у биоткани присутствуют частицы с большим разбросом механической энергии, так что только часть из них участвует в удалении биоткани, эмали и дентина, а остальная часть накапливается во рту пациента, не производя полезной работы, и не всегда может быть удалена полностью с помощью дополнительной системы аспирации.
Использование в данном способе обработки лазерного излучения незначительно повышает эффективность, т.к. воздушно-абразивная струя и лазерное излучение не взаимодействуют, а действуют независимо, производя только суммарное действие, и предельно возможная эффективность лазерных методов обработки ограничена конечной величиной коэффициентов отражения и поглощения биотканей. Кроме того, удаление, рассечение, сверление и другие характерные методы лазерного воздействия на биоткань в ряде случаев сопровождается повышенным некротическим действием. (Markolf Н. Niemz "Laser-Tisse Interactions", Spriger-verlag Berlin Heidelberg, 1996).
Наиболее близким по технической сущности и принятым за прототип является способ и устройство обработки материалов, в том числе биологической ткани. (Заявка PCT/US 96/13960, МПК A 61 C 5/00, N WO 97/079928 опубл. 13.04.97.), в которых при обработке материалов используются частицы конденсированного вещества (капли жидкости), ускорение которых в сторону поверхности обрабатываемого материала индуцируется в результате взаимодействия с электромагнитным излучением, направленным к поверхности обработки.
Основным недостатком прототипов способа и устройства является то, что частицы жидкости в силу недостаточной твердости даже при больших скоростях обладают ограниченной способностью рассечения материалов, особенно твердых, таких как металлы, керамика, эмаль или дентин зуба.
Задачей, на решение которой направлено заявляемое изобретение, является создание способа и устройства, осуществляющего этот способ, обеспечивающих повышенные эффективность и прецезионность обработки материалов, в том числе биологических тканей.
Поставленная задача решается за счет достижения технического результата, заключающегося в максимальном и дозированном использовании энергии светового излучения и индуцированной светом механической энергии частиц конденсированного вещества.
Этот технический результат достигается тем, что в способе светоиндуцированной обработки материалов, преимущественно биотканей, при котором конденсированное вещество направляют в область перед обрабатываемым материалом и облучают световым излучением, направленным в сторону обрабатываемой поверхности, и под действием которого конденсированное вещество воздействует на поверхность обрабатываемого материала, в качестве конденсированного вещества используют абразивные частицы, поглощающие световое излучение или абразивные частицы прозрачные для светового излучения, заключенные в поглощающую излучение оболочку, причем световое излучение воздействует и на обрабатываемый материал, а размер поглощающих излучение абразивных частиц d или толщина поглощающей излучение оболочки δ удовлетворяют условиям:
d >> k-1(λ); δ >> k-1(λ),
k(λ) - коэффициент поглощения конденсированного вещества абразивных частиц или оболочки на длине волны светового излучения λ.
При необходимости повышения интенсивности обработки поглощающие световое излучение абразивные частицы, могут быть заключены и в прозрачную для излучения оболочку.
Доставлять абразивные частицы к зоне обработки могут воздушным потоком или вместе с потоком жидкости, а могут в виде спеченных или спрессованных заранее стержня или ленты.
Время облучения частицы и плотность энергии светового излучения в зоне обработки должны обеспечивать быстрое испарение части объема частицы или части поглощающей оболочки. Размер частиц может быть от 1 мкм до 1 мм. Соответствующий этим размерам коэффициент поглощения лежит в пределах 105 - 102 см-1. Время облучения от одной фемтосекунды до одной миллисекунды, а плотность энергии от 10-1 до 104 Дж/см2.
Абразивные частицы направляют в область перед обрабатываемым материалом синхронно излучению оптического источника, которое может быть как непрерывным, так и импульсным.
Кроме того, абразивные частицы могут направляться в зону обработки и раньше начала импульса излучения как с частотой, равной частоте повторения световых импульсов, так и с частотой, которая меньше частоты световых импульсов.
Поток абразивных частиц может быть также и непрерывным.
Указанный технический результат достигается также тем, что устройство светоиндуцированной обработки материалов, преимущественно биотканей, содержащее блок управления, источник оптического излучения, блок питания источника излучения, вход которого соединен с выходом блока управления, и средство доставки излучения к обрабатываемому материалу, выход которого расположен в наконечнике и является выходом устройства, снабжено резервуаром для абразивных частиц и средством доставки абразивных частиц в область перед обрабатываемым материалом, причем вход средства доставки этих частиц снабжен клапаном, который подключен к выходу блока управления.
Средство доставки абразивных частиц к зоне обработки может быть выполнено в виде воздушного компрессора с воздухопроводом, в котором расположен клапан. К воздухопроводу подсоединен резервуар для абразивных частиц или этот резервуар соединен с трубопроводом, который является выходом резервуара для жидкости. Конец воздухопровода вместе с концом трубопровода, если он присутствует, и выход средства доставки оптического излучения к зоне обработки расположены в наконечнике. В случае если абразивные частицы спрессованы или спечены, то средство доставки их к зоне обработки выполнено в виде системы механической подачи к этой зоне стержня или ленты.
Источник оптического излучения в этом устройстве может быть выполнен в виде лазера, лампы накаливания или дуговой лампы, а в качестве средства доставки излучения к зоне обработки может служить оптическая система, состоящая из различных оптически сопряженных линз, зеркал, призм и оптического волновода. Клапан, которым снабжены разные виды средства доставки абразивных частиц к зоне обработки, может быть выполнен в виде электромеханического ключа.
Световое излучение, пересекаясь с потоком абразивных частиц в зоне обработки, производит абляцию части самих абразивных частиц или оболочки, в которую заключены эти частицы. В результате, частицы приобретают реактивный механический импульс, направленный в сторону обрабатываемого материала. Достигая высокой скорости, абразивные частицы при столкновении с материалом за счет приобретенного импульса вызывают его раскалывание, удаление, рассечение или модификацию поверхности материала. При этом размер струи ускоренных светом абразивных частиц определяется поперечным размером светового пучка, а не размером абразивной струи и при фокусировке его на поверхность обрабатываемого материала может быть очень малым. Поэтому светоиндуцированная обработка абразивными частицами отличается от воздушно-абразивной, при которой струя после выхода из сопла имеет большую угловую расходимость [Feinman R.A. High velosity air micro abrasion for conservative to the preparation; The principle and the clinical procedure. Practical Periodont Aesthet Dent. 1995; 1(8): 31-42], большей прецизионностью и возможностью формирования полостей сложной формы. В частности, возможна обработка с расширением полости при узкой горловине, что часто бывает необходимым, например, в стоматологии.
Характер деструкции материала при светоиндуцированной обработке абразивными частицами зависит от размера и твердости частиц. Для эффективного удаления материала твердость частиц должна быть больше чем твердость материала, а размеры порядка размеров зерен структуры, например эмалевых призм в эмали зуба или монокристаллов в керамике. Использование абразивных частиц делает обработку более эффективной по сравнению с обработкой, описанной в прототипе, т. к. , во-первых, капли жидкости обладают недостаточной твердостью, а во-вторых, значительная часть капель жидкости имеет малые размеры, что приводит к их полному испарению и исключает их воздействие на поверхность обрабатываемого материала.
Длина волны светового облучения, длительность и плотность его энергии, размер абразивных частиц и коэффициент поглощения вещества частиц или оболочки выбираются так, чтобы осуществить эффективную абляцию и испарение части абразивной частицы или ее оболочки, а также осуществить требуемое воздействие на материал. Оболочка абразивной частицы может быть заранее нанесенным на ее поверхность слоем поглощающего излучение вещества или слоем такой же жидкости, подаваемой к поверхности обрабатываемого материала вместе с абразивными частицами. При использовании прозрачной для светового излучения оболочки интенсивность обработки еще более возрастает, т.к. порция пара, образовавшаяся в результате абляции части абразивной частицы, накапливается под оболочкой, а ускорение частицы происходит во время взрыва облученной части оболочки и выбрасывания оттуда этой порции пара. Поток абразивных частиц может, так же как и световое излучение, подаваться непрерывно или в виде импульса. Импульс абразивных частиц может быть синхронизирован со световым импульсом, чтобы уменьшить количество абразивных частиц. В этом случае световой импульс при абляции ускоряет абразивные частицы у поверхности материала. Необходимо учитывать, что время облучения частицы зависит от времени ее нахождения в облучаемой области, но если импульс абразивных частиц предшествует световому импульсу или значительно превышает его длительность, то к моменту прихода светового импульса на поверхности обрабатываемого материала будет сформирован слой абразивных частиц, которые в результате абляции и испарения части непосредственно передают реактивный импульс обрабатываемому материалу. Для осуществления заявляемого способа предлагается устройство, состоящее из источника оптического излучения с системой доставки излучения к зоне обрабатываемого материала, резервуара для абразивных частиц и средства доставки абразивных частиц, которые могут подаваться в твердом состоянии, жидком или воздушном потоке к зоне обрабатываемого материала, так что лазерный и абразивный поток пересекаются в зоне обрабатываемого материала, с учетом возможности непосредственного облучения обрабатываемого материала и при отсутствии абразивных частиц.
Сущность изобретения поясняется фиг. 1 - 14, где на фиг. 1 - 3 показан принцип преобразования световой энергии в механическую энергию частиц; на фиг. 4 - 8 - временные диаграммы светового и абразивного потоков, на фиг. 9 представлена принципиальная схема устройства светоиндуцированной обработки. Фиг. 10 - 12 иллюстрирует возможные реализации наконечника устройства, а на фиг. 13 и 14 - фотографии результата обработки предлагаемым способом.
Рассмотрим принцип преобразования энергии лазерного потока в механическую энергию абразивных частиц. Световой поток 1 падает на абразивную частицу 2. Форма частицы может быть любой. Для простоты она показана как шар. Длина волны светового потока 1 и материал абразивной частицы 2 выбраны так, что выполняется условие d ≫ k-1(λ), где d - характерный размер частицы 2, а k(λ) - коэффициент поглощения ее материала на длине волны светового излучения λ. В этом случае глубина проникновения света в частицу будет меньше ее размеров, что является вместе с ограничением длительности облучения необходимым условием нагрева только части абразивной частицы. Длительность τ светового облучения и плотность энергии E облучения частиц удовлетворяет условиям:
Figure 00000002

2) E >> k-1(λ)ρQ,
где α - коэффициент температуропроводности материала абразивной частицы,
ρ - ее плотность,
Q - удельная энергия перехода вещества абразивной частицы из твердого в газообразное состояние.
Первое условие означает, что нагрев поверхности частицы, обращенной к источнику оптического излучения, происходит адиабатически и не приводит к равномерному нагреву всей частицы. А второе условие означает, что энергия, поглощенная частью 3 частицы 2, достаточна для испарения (абляции) этой части. Таким образом, при выполнении этих условий часть 4 частицы 2 будет испарена, а насыщенный пар 5, образованный вследствие абляции части 4, придает неиспаренной части 6 механический импульс Р реактивной отдачи, вследствие чего частица ускоряется в направлении распространения светового потока.
Аналогично, для абразивной частицы в оболочке (фиг. 2) механизм преобразования световой энергии в механическую энергию абразивной частицы состоит в абляции части 7 нагретой области 8 оболочки 9. Оболочка 9 частицы 2 в этом случае изготавливается из материала с коэффициентом поглощения k(λ), удовлетворяющим условию δ ≫ k-1(λ), где δ - толщина оболочки 9.
Материал оболочки может быть твердым неорганическим или полимерным, кроме того, он может быть активирован ионами или молекулами, сильно поглощающими оптическое излучение. Оболочка также может представлять собой слой жидкости. Если жидкость сильно поглощает на длине волны светового излучения, то преобразование энергии осуществляется за счет абляции жидкости. Если оболочка прозрачна для лазерного излучения, то механизм преобразования световой энергии в механическую энергию частицы состоит в следующем (фиг. 3). Световой поток 1 вызывает абляцию части 4 частицы 2. При этом насыщенный пар 5 вспучивает прозрачную оболочку 10 и разрывает ее, т.к. испарение в начале происходит в запертом оболочкой 10 объеме, давление насыщенного пара 5 достигает значительно большей величины, чем в случае без прозрачной оболочки, и соответственно увеличивается реактивный импульс. Насыщенный пар 5, вырываясь из-под оболочки 10 вместе с продуктами распада 11, придает неиспаренной части 6 частицы 2 механический импульс Р.
Длительность облучения τ и его плотность энергии E в случае поглощающей оболочки должны удовлетворять условиям:
Figure 00000003

4) E >> k-1(λ)ρ′Q′,
где α′ - коэффициент температуропроводности материала оболочки 9;
ρ′ - плотность материала оболочки 9,
Q' - удельная энергия перехода вещества оболочки 9 в газообразное состояние.
Таким образом, из-за реактивной отдачи, возникающей из-за асимметричного испарения материала абразивной частицы или ее оболочки, абразивная частица получает механический импульс
Figure 00000004
, который, складываясь с начальным импульсом абразивной частицы
Figure 00000005
, дает суммарный импульс
Figure 00000006
.
Для предлагаемого способа начальный импульс абразивной частицы не имеет значения и может быть пренебрежимо малым по сравнению с
Figure 00000007
.
Поэтому практически
Figure 00000008
и направление импульса
Figure 00000009
совпадает с направлением оптического излучения.
В результате взаимодействия с материалом абразивная частица производит, как известно [В.А. Шманев, А.П. Шулепов, см. Струйная гидроабр. обр. деталей. Москва, 1995], при малых импульсах и энергиях упрочнение (модификацию) его поверхности, а при больших импульсах и энергиях его удаление или разрезание. При этом эффективность этих процессов зависит от отношения микротвердости абразивной частицы и обрабатываемого материала и максимальна, когда микротвердость абразивной частицы превышает микротвердость обрабатываемого материала. Универсальными абразивными частицами являются частицы алмаза и корунда, твердость которых превышает твердость большинства материалов. Для обработки биотканей кроме этих материалов могут быть использованы абразивные частицы из биологически безопасных материалов, к которым относятся гидроксилапатит и углерод, может также использоваться эльбор, кремний, лед и др.
Размер частиц и их оболочек должны удовлетворять условиям, приведенным выше, но в любом случае размер абразивной частицы и толщина поглощающей излучение оболочки должны быть больше длины волны света для обеспечения ее асимметричного освещения. Учитывая оптический диапазон длин волн, размер абразивной частицы или поглощающей оболочки не должен быть меньше одного микрометра. Однако необходимо, чтобы их размер абразивной частицы не превышал поперечных размеров светового пучка, в области их пересечения, был не более одного миллиметра.
Для таких размеров согласно приведенным выше формулам коэффициент поглощения вещества частиц или оболочки составляет 102 - 105 см-1. Длительность облучения может быть в диапазоне 10-15 - 10-1 с, а плотность энергии облучения 10-1 - 104 Дж/см2.
Реализация предлагаемого способа возможна при соблюдении несколько временных режимов работы. В первом случае (фиг. 4) световой поток 1 представляет собой световые импульсы, следующие с определенной частотой повторения, а поток 12 абразивных частиц 2 непрерывен. Этот режим наиболее прост и дешев. Однако в этом случае возможно накопление в зоне обработки лишних частиц, препятствующих эффективному использованию световой энергии. Такой же результат возможен при непрерывных световых и абразивных потоках. Во втором и третьем режимах (фиг. 5, 6) световой поток 1 и поток 12 абразивных частиц 2 подают периодическими импульсами. В этих режимах частота повторения импульсов потока абразивных частиц и световых импульсов равны. Во втором режиме (фиг. 5) световой и абразивный импульсы накладываются. Путем регулирования длительности импульса потока 12 абразивных частиц 2 можно точно установить их расход, а также избежать формирования слоя абразивных частиц на поверхности материала. Кроме того, при обработке биотканей можно существенно снизить инвазивность процедуры за счет снижения доли энергии светового потока 1 с непосредственно взаимодействующей биотканью. В этом случае световой импульс ускоряет только абразивные частицы, и удаление, рассечение или модификация материала происходит при столкновении абразивных частиц с материалом за счет хрупкого или вязкого раскалывания, а также упругого выдавливания. В третьем режиме (фиг. 6) импульс потока 12 абразивных частиц предшествует импульсу светового потока 1. В этом случае перед приходом светового импульса на поверхности материала образуется тонкий слой абразивных частиц, и удаление, рассечение или модификация материала производится путем непосредственной передачи реактивного импульса отдачи при абляции и испарении части этих абразивных частиц или их оболочек к обрабатываемому материалу. Четвертый режим работы (фиг. 7) отличается тем, что частота повторения лазерных импульсов меньше частоты повторения импульсов потока абразивных частиц. В этом случае часть световых импульсов воздействует на материал совместно с абразивными частицами, а часть действует непосредственно на материал. Такой режим может быть полезным, когда световое воздействие существенно отличается от абразивного и может иметь полезные для обработки материала свойства. Например, когда при совместном воздействии происходит рассечение мягкой биоткани, а при воздействии только световых (в данном случае лазерных) импульсов коагуляция кровеносных сосудов. Такой же результат достигается при непрерывном облучении и импульсном потоке частиц (фиг. 8).
Устройство для реализации описанного способа представлено на фиг. 9. Оно состоит из источника оптического излучения 13, блока управления 14 и блока питания 15 источника 13, оптической системы доставки 16 излучения к зоне обработки материала 17, резервуара абразивных частиц 18 и средства доставки 19 абразивных частиц к зоне обработки материала 17. Средство доставки 19 абразивных частиц снабжено клапаном 20, который соединен с выходом блока управления 14. Другой выход блока управления 14 соединен с входом блока питания 15. Система доставки 16 оптического излучения может быть выполнена в виде оптически сопряженных линз 21, оптического волокна 22 и поворотного зеркала 23. Средство доставки 19 абразивных частиц в самом простом случае представляет собой воздухопровод 24, соединенный с воздушным компрессором 25 и с резервуаром абразивных частиц 18. (На фиг. 9 это соединение показано пунктиром). Резервуар абразивных частиц 18 может быть соединен не с воздухопроводом 24, а с резервуаром для жидкости 26 или трубопроводом 27, соединяющим резервуар для жидкости 26 с зоной обработки материала 17. (На фиг. 9 представлена именно такая реализация). Резервуары 26 и 18 могут быть объединены. В этом случае образуется жидкая суспензия абразивных частиц, доставляемая к зоне обработки по трубопроводу 27. Клапан 20 выполнен в виде электромеханического ключа и расположен на выходе воздухопровода 24 из воздушного компрессора 25. Резервуар 26 соединен с помпой 28. Выходы воздухопровода 24 и трубопровода 27 вместе с выходом оптической системы доставки 16 излучения к зоне обработки материала 17 объединены в наконечник 29 и являются выходами 30, 31, 32 устройства.
Устройство работает следующим образом. Излучение оптического источника 13 по системе доставки 16 доставляется к зоне обработки материала 17. В эту же зону от устройства формирования потока абразивных частиц в газовой или жидкостной струе по воздухопроводу 24 или трубопроводу 27 подается поток абразивных частиц 2. Световой поток 1 и абразивный поток 12 пересекаются в зоне обработки. При этом световой поток 1 производит абляцию абразивных частиц 2, которые при контакте с поверхностью обрабатываемого материала 17 передают приобретенный ими механический импульс материалу 17, производя упругое внедрение, или раскалывание. В случае жидкоабразивного потока роль жидкости дополнительно состоит в охлаждении обрабатываемого материала 17 и предотвращении его перегрева. Часть светового потока может непосредственно воздействовать на обрабатываемый материал, производя его абляцию или селективный нагрев. Блок управления 14 осуществляет регулирование работы устройства управляя основными параметрами: энергией оптического излучения и расходом абразивного материала. Абразивный поток 12 может иметь вид импульса, длительность и положение которого по отношению к световому импульсу позволяют управлять режимом обработки.
На фиг. 10 - 12 показаны различные варианты устройства наконечника 29 для устройства светоиндуцированной обработки материалов. На фиг. 10 показан наконечник со световым 30 и газоабразивным 31 выходами. Световой выход 30 реализован оптическим волокном. Световое излучение направляется на обрабатываемый материал 17 в данном случае оптическим волокном 30 под углом φ. Наконечник 29 в целом ориентирован по отношению к поверхности обрабатываемого материала 17 так, что угол φ между осью светового пучка и перпендикуляром поверхности материала 17 составлял заданную величину. Ось потока 12 абразивных частиц 2 из газоабразивного выхода 31 направлена под углом ϑ к оси светового потока 1, который при перпендикулярном падении потока 12 равен φ. Изменяя φ и ϑ, можно регулировать эффективность удаления материала и микрорельеф поверхности после обработки.
На фиг. 11 показан наконечник 29, в котором жидкоабразивный поток под малым давлением подается через сопло 32 в зону, где он увлекается газовой струей, направляемой соплом 31 в область пересечения со световым потоком 1. Дальнейшее направление движения абразивных частиц совпадает с направлением светового потока.
На фиг. 12 показан вариант наконечника 29, в котором кроме выходов светового 30, газоабразивного 31 и жидкостного 32 добавлен еще один воздушный выход 33. В этом случае через выход 31 подаются под малым давлением газоабразивная струя, а через сопло 32 поток жидкости, которая увлекается в сторону газоабразивной струи и облучаемого пространства воздушным потоком под большим давлением из сопла 33. Все элементы наконечника помещены в корпус 34.
Источник оптического излучения 13 может быть как когерентным (лазер), так и некогерентным (лампа накаливания или дуговая лампа). В качестве когерентного источника универсальными для предлагаемого способа являются CO2 лазер или эксимерный лазер, т.к. большинство твердых веществ для абразивных частиц, в том числе указанные выше, имеют сильное поглощение в области длин волн инфракрасной области оптического диапазона 9 - 11 мкм и в ультрафиолетовой области - менее 0,3 мкм. Для ультрафиолетовой области возможно использование ртутной лампы. В качестве импульсных лазеров можно использовать лазеры на кристалле алюмо-иттриевого граната активированного ионами эрбия или неодима. Генерируемое излучение соответственно имеет длину волны 2,94 мкм или 1,064 мкм. Энергия генерируемых импульсов около 1 Дж. Длительность импульсов от 50 до 500 μs. Частота повторения импульсов 25 Гц. Средняя мощность 15 Вт.
В качестве жидкости может использоваться вода или вода с добавкой пищевого красителя.
При использовании Nd лазера целесообразно в качестве пищевого красителя добавлять частицы углерода с размерами от 10 до 100 мкм. Их присутствие в воде обеспечивает коэффициент поглощения, превышающий 105 см-1.
В случае Er-лазера целесообразно в качестве оболочки использовать воду, т.к. вода имеет коэффициент поглощения на длине волны 2,94 мкм превышает 106 см-1.
SEM фотография кратера в твердой ткани зуба (дентин), образованного излучением YAG:Er лазера без использования абразивных частиц (фиг. 13) и с использованием абразивных сапфировых частиц диаметром 12 мкм в водяной оболочке, ускоренных лазерным импульсом длительностью 200 мкс и плотностью энергии 50 Дж/см2 (фиг. 14), демонстрирует, что использование вышеописанных способа и устройства позволяет существенно (практически в 2 раза) повысить эффективность обработки тканей зуба человека.

Claims (23)

1. Способ светоиндуцированной обработки материалов, преимущественно биотканей, при котором конденсированное вещество направляют в область перед обрабатываемым материалом и облучают световым излучением, направленным в сторону обрабатываемой поверхности, и под действием которого конденсированное вещество воздействует на поверхность обрабатываемого материала, отличающийся тем, что в качестве конденсированного вещества используют абразивные частицы, поглощающие световое излучение, или абразивные частицы прозрачные для светового излучения, заключенные в поглощающую излучение оболочку, причем световое излучение воздействует и на обрабатываемый материал, а размер поглощающих излучение абразивных частиц d или толщина δ поглощающей излучение оболочки удовлетворяют условиям
d >> k-1(λ); δ >> k-1(λ),
где k(λ) коэффициент поглощения конденсированного вещества абразивных частиц или оболочки на длине волны светового излучения λ.
2. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что абразивные частицы, поглощающие оптическое излучение заключены в прозрачную для излучения оболочку.
3. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом воздушным потоком.
4. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом потоком жидкости.
5. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом в виде стержня или ленты.
6. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п.1, отличающийся тем, что длительность нахождения поглощающих световое излучение абразивных частиц в зоне облучения τ и плотность энергии Е излучения вблизи поверхности обрабатываемого материала удовлетворяют условиям
Figure 00000010

где α - коэффициент температуропроводности вещества абразивных частиц;
ρ - плотность этого вещества;
Q - удельная энергия перехода вещества абразивной частицы из твердого состояния в газообразное.
7. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что длительность нахождения частиц, заключенных в поглощающую световое излучение оболочку, в зоне облучения τ и плотность энергии Е излучения вблизи поверхности обрабатываемого материала удовлетворяют условиям
Figure 00000011

где α′ - коэффициент температуропроводности вещества оболочки;
ρ′ - плотность вещества поглощающей оболочки;
Q' - удельная энергия перехода вещества поглощающей оболочки в газообразное состояние.
8. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что световое излучение направляют в область перед обрабатываемым материалом непрерывно.
9. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п.1, отличающийся тем, что оптическое излучение направляют в область перед обрабатываемым материалом в импульсном режиме.
10. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 1, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом синхронно со световым излучением.
11. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 9, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом раньше начала импульса светового излучения, а продолжительность потока абразивных частиц меньше периода следования световых импульсов.
12. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п. 9, отличающийся тем, что абразивные частицы направляют в область перед обрабатываемым материалом импульсами, частота повторения которых меньше частоты повторения световых импульсов.
13. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п.1, отличающийся тем, что абразивные частицы направляют в зону их облучения со скоростью не меньше 10-2 м/с.
14. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п.1, отличающийся тем, что размер абразивных частиц или толщина оболочки, поглощающих оптическое излучение, находятся в пределах от 1 до 1000 мкм, а соответственно коэффициент поглощения излучения 10-5-1 > k > 102 см-1.
15. Способ светоиндуцированной обработки материалов, преимущественно биотканей, по п.1, отличающийся тем, что абразивные частицы облучают световым излучением, плотность энергии которого лежит в интервале 10-1 < Е < 104 Дж/см2.
16. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, содержащее блок управления, источник оптического излучения, блок питания источника излучения, вход которого соединен с выходом блока управления и средство доставки излучения к обрабатываемому материалу, выход которого расположен в наконечнике и является выходом устройства, отличающееся тем, что оно снабжено резервуаром для абразивных частиц и средством доставки абразивных частиц к пространству перед обрабатываемым материалом, причем вход средства доставки этих частиц снабжен клапаном, который подключен к выходу блока управления.
17. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п. 16, отличающееся тем, что средство доставки абразивных частиц к обрабатываемому материалу выполнено в виде воздухопровода, соединенного с воздушным компрессором и с выходом резервуара для абразивных частиц, клапан расположен в воздухопроводе, а конец воздухопровода вместе с выходом средства доставки излучения к обрабатываемому материалу расположен в наконечнике и является также выходом устройства.
18. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п.16, отличающееся тем, что средство доставки абразивных частиц к обрабатываемому материалу выполнено в виде воздухопровода, снабженного клапаном, соединенного с воздушным компрессором, и резервуара для жидкости с трубопроводом, с которым соединен выход резервуара абразивных частиц, причем конец трубопровода вместе с концом воздухопровода и с выходом средства доставки излучения к обрабатываемому материалу расположен в наконечнике и является также выходом устройства.
19. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п.16, отличающееся тем, что средство доставки абразивных частиц к зоне обработки выполнено в виде системы механической подачи стержня или ленты.
20. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п. 16, отличающееся тем, что источник оптического излучения выполнен в виде лазера.
21. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п. 16, отличающееся тем, что источник оптического излучения выполнен в виде лампы накаливания или дуговой лампы.
22. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п.16, отличающееся тем, что средство доставки оптического излучения к зоне обработки выполнено в виде оптически сопряженной системы линз, оптического волновода, призм и зеркал.
23. Устройство светоиндуцированной обработки материалов, преимущественно биотканей, по п. 16, отличающееся тем, что клапан, подключенный к выходу блока управления, выполнен в виде электромеханического ключа.
RU98102083/14A 1998-01-23 1998-01-23 Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации RU2175873C2 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU98102083/14A RU2175873C2 (ru) 1998-01-23 1998-01-23 Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации
US09/381,773 US6558372B1 (en) 1998-01-23 1999-01-19 Method for treating materials, especially biological tissues, using light induction and device for realizing the same
AU24437/99A AU2443799A (en) 1998-01-23 1999-01-19 Method for treating materials, especially biological tissues, using light induction and device for realising the same
PCT/RU1999/000016 WO1999037363A1 (fr) 1998-01-23 1999-01-19 Procede de traitement de materiaux, notamment de tissus biologiques, par induction lumineuse et dispositif de mise en oeuvre de ce procede
EP99903966A EP0976421A4 (en) 1998-01-23 1999-01-19 METHOD FOR TREATING MATERIALS, ESPECIALLY OF BIOLOGICAL TISSUE, BY LIGHT INDUCTION AND DEVICE FOR REALIZING THE SAME
US10/408,408 US7048731B2 (en) 1998-01-23 2003-04-07 Methods and apparatus for light induced processing of biological tissues and of dental materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98102083/14A RU2175873C2 (ru) 1998-01-23 1998-01-23 Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации

Publications (2)

Publication Number Publication Date
RU98102083A RU98102083A (ru) 1999-12-10
RU2175873C2 true RU2175873C2 (ru) 2001-11-20

Family

ID=20201957

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98102083/14A RU2175873C2 (ru) 1998-01-23 1998-01-23 Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации

Country Status (5)

Country Link
US (1) US6558372B1 (ru)
EP (1) EP0976421A4 (ru)
AU (1) AU2443799A (ru)
RU (1) RU2175873C2 (ru)
WO (1) WO1999037363A1 (ru)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
AU7568698A (en) 1997-05-15 1998-12-08 General Hospital Corporation, The Method and apparatus for dermatology treatment
US7048731B2 (en) * 1998-01-23 2006-05-23 Laser Abrasive Technologies, Llc Methods and apparatus for light induced processing of biological tissues and of dental materials
RU2175873C2 (ru) 1998-01-23 2001-11-20 Альтшулер Григорий Борисович Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации
US7041094B2 (en) * 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US6709269B1 (en) 2000-04-14 2004-03-23 Gregory B. Altshuler Apparatus and method for the processing of solid materials, including hard tissues
US8348933B2 (en) * 2002-04-09 2013-01-08 Laser Abrasive Technologies, Llc Method and apparatus for processing hard material
US7267672B2 (en) * 2002-04-09 2007-09-11 Gregory B. Altshuler Method and apparatus for processing hard material
CA2489506A1 (en) 2002-06-19 2003-12-31 Palomar Medical Technologies, Inc. Method and apparatus for treatment of cutaneous and subcutaneous conditions
CA2501098C (en) 2002-10-23 2014-04-08 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US20060183072A1 (en) * 2003-04-25 2006-08-17 Michael Black Device for application of multiple hygienic effects
US6989023B2 (en) * 2003-07-08 2006-01-24 Oralum, Llc Hygienic treatments of body structures
US7144247B2 (en) * 2003-04-25 2006-12-05 Oralum, Llc Hygienic treatments of structures in body cavities
US7291140B2 (en) * 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US8915906B2 (en) * 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US8870856B2 (en) 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US20080172045A1 (en) * 2003-10-24 2008-07-17 Shanks Steven C Acne treatment device
US7326199B2 (en) * 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7309335B2 (en) * 2003-12-31 2007-12-18 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US8268332B2 (en) 2004-04-01 2012-09-18 The General Hospital Corporation Method for dermatological treatment using chromophores
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
WO2007035444A2 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
CA2622433A1 (en) * 2005-09-21 2007-04-05 Medtronic, Inc. Composite heart valve apparatus manufactured using techniques involving laser machining of tissue
EP1974422A4 (en) * 2005-12-15 2011-12-07 Laser Abrasive Technologies Llc METHOD AND APPARATUS FOR TREATING SOLID MATERIAL COMPRISING HARD TISSUES
WO2007109136A2 (en) * 2006-03-17 2007-09-27 Light Dimensions, Inc. Light-based enhancing apparatuses and methods of use
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
WO2008073315A2 (en) * 2006-12-07 2008-06-19 Lumenis Ltd. Tissue-treating device with medium-control mechanism
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US8251984B2 (en) * 2009-07-30 2012-08-28 Convergent Dental, Inc. Dental laser system using midrange gas pressure
WO2013033710A2 (en) 2011-09-02 2013-03-07 Convergent Dental, Inc. Laser based computer controlled dental preparation system
KR102342629B1 (ko) 2012-04-18 2021-12-22 싸이노슈어, 엘엘씨 피코초 레이저 장치 및 그를 사용한 표적 조직의 치료 방법
EP2849671B1 (en) 2012-05-14 2021-04-07 Convergent Dental, Inc. Apparatus for laser based dental treatment with controlled fluid cooling
EP2973894A2 (en) 2013-03-15 2016-01-20 Cynosure, Inc. Picosecond optical radiation systems and methods of use
KR102627248B1 (ko) 2018-02-26 2024-01-19 싸이노슈어, 엘엘씨 Q-스위치드 캐비티 덤핑 서브 나노초 레이저

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1497779A1 (de) * 1966-04-27 1969-10-02 Helmut Schneider Verfahren und Vorrichtung zur Erzeugung von Schall- oder Ultraschallwellen an Oberflaechen
JPS6041928Y2 (ja) 1981-09-04 1985-12-21 株式会社モリタ製作所 レ−ザ光による歯科処置用コントラアングル型ハンドピ−ス
SU1593669A1 (ru) 1985-11-14 1990-09-23 Алма-Атинский Государственный медицинский институт Способ лечени неосложненного кариеса
US5257935A (en) 1988-03-14 1993-11-02 American Dental Laser, Inc. Dental laser
US5020995A (en) 1989-01-18 1991-06-04 Guy Levy Surgical treatment method and instrument
US5092773A (en) * 1989-01-18 1992-03-03 Endo Technic Corporation Method and apparatus for filling a tooth canal
DE3911871A1 (de) 1989-04-11 1990-10-25 Aesculap Ag Verfahren zum zerstoeren und abtragen von zahnmaterial
US5060527A (en) 1990-02-14 1991-10-29 Burgess Lester E Tactile sensing transducer
DE59209007D1 (de) * 1991-08-28 1997-12-11 Siemens Ag Vorrichtung zur Lasermaterialbearbeitung biologischer Hartsubstanz, insbesondere Zahnhartsubstanz
US5267856A (en) 1991-09-20 1993-12-07 Premier Laser Systems, Inc. Laser surgical method
US5752948A (en) * 1991-10-29 1998-05-19 Thermolase Corporation Hair removal method
US5525058A (en) * 1992-03-27 1996-06-11 American Dental Technologies, Inc. Dental treatment system
WO1995025476A1 (en) * 1992-06-22 1995-09-28 American Dental Technologies, Inc. Combination air abrasive system and laser system for dental applications
US5334016A (en) * 1992-06-22 1994-08-02 American Dental Technologies, Inc. Combination air abrasive system and laser system for dental applications
US5401171A (en) 1992-07-20 1995-03-28 Paghdiwala; Abid F. Dental laser device and method
CA2102884A1 (en) * 1993-03-04 1994-09-05 James J. Wynne Dental procedures and apparatus using ultraviolet radiation
US5409376A (en) * 1993-03-10 1995-04-25 Murphy; Quentin M. Apparatus and process for laser-assisted driling
JP2670420B2 (ja) * 1993-11-18 1997-10-29 株式会社吉田製作所 レーザー切削装置
US5554029A (en) * 1994-05-31 1996-09-10 Medical Laser Technology, Inc. Dental laser apparatus and method for ablating non-metallic dental material from a tooth
US5734765A (en) 1994-07-26 1998-03-31 Ceramoptec Industries Inc. Damage resistant infrared fiber delivery device and system
RU2089127C1 (ru) * 1994-11-02 1997-09-10 Григорий Борисович Альтшулер Способ обработки твердых тканей зуба лазерным излучением и устройство для его осуществления
RU2096051C1 (ru) * 1995-02-24 1997-11-20 Григорий Борисович Альтшулер Устройство для лазерной обработки биологической ткани (его варианты)
US5800165A (en) * 1995-03-28 1998-09-01 Loma Linda University Medical Center Dental instrument and method of bleaching teeth using a laser
US5637245A (en) * 1995-04-13 1997-06-10 Vernay Laboratories, Inc. Method and apparatus for minimizing degradation of equipment in a laser cleaning technique
US6083218A (en) * 1996-07-10 2000-07-04 Trw Inc. Method and apparatus for removing dental caries by using laser radiation
RU2175873C2 (ru) 1998-01-23 2001-11-20 Альтшулер Григорий Борисович Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации
US6162055A (en) * 1998-02-13 2000-12-19 Britesmile, Inc. Light activated tooth whitening composition and method of using same
US6137110A (en) 1998-08-17 2000-10-24 The United States Of America As Represented By The United States Department Of Energy Focused ion beam source method and apparatus
WO2000062694A1 (en) 1999-04-16 2000-10-26 Gregory Altshuler Apparatus and method for the processing of solid materials, including hard tissues
US6270342B1 (en) * 1999-07-28 2001-08-07 Ceramoptec Industries, Inc. Dental laser treatment hand-piece and system

Also Published As

Publication number Publication date
AU2443799A (en) 1999-08-09
WO1999037363A1 (fr) 1999-07-29
EP0976421A4 (en) 2007-05-02
US6558372B1 (en) 2003-05-06
EP0976421A1 (en) 2000-02-02

Similar Documents

Publication Publication Date Title
RU2175873C2 (ru) Способ светоиндуцированной обработки материалов, преимущественно биотканей, и устройство для его реализации
US7048731B2 (en) Methods and apparatus for light induced processing of biological tissues and of dental materials
US5968037A (en) User programmable combination of atomized particles for electromagnetically induced cutting
US6709269B1 (en) Apparatus and method for the processing of solid materials, including hard tissues
US6231567B1 (en) Material remover and method
US20080151953A1 (en) Electromagnet energy distributions for electromagnetically induced mechanical cutting
US6254597B1 (en) Tissue remover and method
US6607524B1 (en) Surgical laser and method of ablating hard biological materials
Nelson et al. Ablation of bone and methacrylate by a prototype mid‐infrared erbium: YAG laser
EP1090600B1 (en) Electromagnetically induced cutting with atomized fluid particles for dermatological applications
JP4073036B2 (ja) 電磁誘導式カッティング用の、ユーザがプログラム可能な組合せの霧化粒子
EP0365754B1 (en) Enhandement of ultraviolet laser ablation and etching of organic solids
US20050281887A1 (en) Fluid conditioning system
RU98102083A (ru) Способ светоиндуцированной обработки материалов, преимущественно биотканей и устройство для его реализации
Izatt et al. Pulsed laser ablation of calcified tissue: physical mechanisms and fundamental parameters
Gutknecht et al. A novel quantum square pulse (QSP) mode erbium dental laser
US20080032251A1 (en) Laser carious region ablation
Freiberg et al. Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray versus water surface film
Hess Subsurface morphologic changes of ND: YAG laser‐etched enamel
CA2825182A1 (en) Dental laser system and treatment method
WO2000062694A9 (en) Apparatus and method for the processing of solid materials, including hard tissues
WO1998033623A1 (en) Electromagnetically induced cutter with shaped fluid particles
RU2795555C2 (ru) Способ и устройство для лазерной литотрипсии
CA2586117C (en) User programmable combination of atomized particles for electromagnetically induced cutting
RU99108112A (ru) Устройство и способ обработки твердых материалов, включая твердую биоткань