RU2174735C1 - Мгд-генератор - Google Patents

Мгд-генератор Download PDF

Info

Publication number
RU2174735C1
RU2174735C1 RU2001106128A RU2001106128A RU2174735C1 RU 2174735 C1 RU2174735 C1 RU 2174735C1 RU 2001106128 A RU2001106128 A RU 2001106128A RU 2001106128 A RU2001106128 A RU 2001106128A RU 2174735 C1 RU2174735 C1 RU 2174735C1
Authority
RU
Russia
Prior art keywords
torus
energy storage
polar liquid
polar
generator according
Prior art date
Application number
RU2001106128A
Other languages
English (en)
Inventor
О.В. Грицкевич
Б.О. Грицкевич
Н.П. Белошицкий
Г.П. Грабовой
А.Ф. Герасимов
В.А. Джанибеков
Н.И. Коровяков
А.Н. Никитин
В.А. Петухов
Л.И. Поляшов
Original Assignee
Грицкевич Олег Вячеславович
Грицкевич Борис Олегович
Белошицкий Николай Павлович
Грабовой Григорий Петрович
Герасимов Аркадий Федорович
Джанибеков Владимир Александрович
Коровяков Николай Иванович
Никитин Альберт Николаевич
Петухов Владимир Алексеевич
Поляшов Леонид Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Грицкевич Олег Вячеславович, Грицкевич Борис Олегович, Белошицкий Николай Павлович, Грабовой Григорий Петрович, Герасимов Аркадий Федорович, Джанибеков Владимир Александрович, Коровяков Николай Иванович, Никитин Альберт Николаевич, Петухов Владимир Алексеевич, Поляшов Леонид Иванович filed Critical Грицкевич Олег Вячеславович
Priority to RU2001106128A priority Critical patent/RU2174735C1/ru
Application granted granted Critical
Publication of RU2174735C1 publication Critical patent/RU2174735C1/ru

Links

Images

Abstract

Использование: для производства электроэнергии. Технический результат заключается в повышении эффективности преобразования энергии. Генератор содержит корпус из диэлектрика, имеющий форму тора, с покрытием из сегнетоэлектрика, на внутренней поверхности полярная жидкость заполняет тор. Обмотки возбуждения соединены с источником переменного тока и создают бегущее магнитное поле, перемещающее полярную жидкость. В противолежащие стенки тора радиально встроена камера стабилизации движения полярной жидкости в виде полого цилиндра с обмоткой, подключенной к источнику постоянного тока. В торе расположены электроды устройства ионизации полярной жидкости, подключенные к высоковольтному источнику периодического напряжения, выполненному из параллельно включенных управляемого зарядного устройства, молекулярного накопителя электроэнергии и индуктивного накопителя электроэнергии с управляемыми выключателями, на внешней поверхности тора размещена по крайней мере одна силовая обмотка с подключенным к ней молекулярным накопителем электроэнергии. 8 з.п.ф-лы, 2 ил.

Description

Изобретение относится к области энергетики и может быть использовано в магнитогидродинамических генераторах, преимущественно вырабатывающих электрическую энергию в десятки или сотни кВт.
Известен МГД-генератор, содержащий корпус, выполненный в виде полого цилиндра, открытые торцы которого служат для впуска и выведения жидкостной рабочей среды, электромагнитные обмотки, создающие магнитное поле, направленное перпендикулярно оси цилиндра, и размещенные в цилиндре электроды, установленные параллельно направлению магнитного поля (см. патент Японии N 2713216, кл. H 02 К 44/00, оп. 1998). В известном генераторе в качестве рабочей электропроводной среды, перемещающейся вдоль оси цилиндра, используется морская вода, например, в виде морских волн, а электрическая нагрузка подключена к электродам.
Недостатком известного устройства является его низкая эффективность, обусловленная малой скоростью перемещения жидкости в полом цилиндре и низкой электропроводностью естественной морской воды.
Наиболее близким по технической сущности к заявленному является магнитогидродинамический генератор, содержащий корпус из немагнитного материала, имеющий форму тора, с диэлектрическим покрытием на внутренней стенке и электромагнитную систему, состоящую из обмоток возбуждения и силовых обмоток, подключенных к нагрузке (см. патент РФ N 2109353, кл. H 02 К 44/00, оп. 1998).
В известном генераторе в качестве рабочей среды, заполняющей тороидальный канал, используется высокотемпературный газ, который вводится в канал из камер сгорания, снабженных устройствами импульсного введения в них топлива и окислителя. Камеры сгорания распределены по длине тора и встроены в его стенку, при этом в тороидальном канале размещены термоэлектроды, расположенные в соответствующих зонах расположения обмоток возбуждения.
Недостатком известного МГД-генератора является недостаточно высокая эффективность преобразования энергии перемещающейся высокотемпературной электропроводной среды в электрическую энергию вследствие ограниченного объема, занимаемого в тороидальном пространстве ионизированным высокотемпературным газом, и низкой электропроводности рабочей среды. Кроме того известный генератор имеет низкую эксплуатационную надежность, поскольку высокотемпературная рабочая среда взаимодействует с внутренними поверхностями камер сгорания и тора и элементами, размещенными в них. Эксплуатационная надежность снижается также вследствие сложности конструкции системы получения высокотемпературной рабочей среды.
Задачей изобретения является повышение эффективности преобразования энергии магнитогидродинамическим генератором при одновременном увеличении его эксплуатационной надежности.
Решение указанной задачи обеспечивается новым МГД- генератором, содержащим корпус из диэлектрического материала, имеющий форму тора, внутренняя поверхность которого выполнена с покрытием из сегнетоэлектрика, а внутренняя полость заполнена полярной жидкостью, соединенные с источником переменного тока электромагнитные обмотки возбуждения, создающие бегущее магнитное поле в полярной жидкости, устройство ионизации полярной жидкости, состоящее из электродов, размещенных в полярной жидкости, и подключенного к ним высоковольтного источника периодического напряжения, выполненного из параллельно включенных управляемого зарядного устройства, молекулярного накопителя электроэнергии с управляемым выключателем и индуктивного накопителя электроэнергии с управляемым выключателем, по крайней мере одну присоединенную к нагрузке силовую обмотку, охватывающую внешнюю поверхность тора, с подключенным к ней молекулярным накопителем получаемой электроэнергии и камеру стабилизации движения полярной жидкости, выполненную в виде полого цилиндра, встроенного радиально в противолежащие стенки тора, при этом цилиндр охвачен электромагнитной обмоткой, подключенной к источнику постоянного тока; при этом предпочтительно: обмотки возбуждения размещать в полярной жидкости; обмотки возбуждения выполнять в виде секций, равномерно распределенных по длине тора; электроды устройства ионизации равномерно распределять по длине тора; внутреннюю поверхность цилиндра выполнять с покрытием из сегнетоэлектрика; электромагнитные обмотки, управляемое зарядное устройство, молекулярный накопитель электроэнергии с управляемым выключателем и индуктивный накопитель электроэнергии с управляемым выключателем выполнять в виде единого функционального блока; в генератор дополнительно ввести блок управления на микропроцессорах, соединенный с зарядным устройством, выключателем молекулярного накопителя электроэнергии, выключателем индуктивного накопителя электроэнергии и с электромагнитными обмотками возбуждения; генератор дополнительно снабжать системой замены полярной жидкости; систему замены полярной жидкости выполнять в виде по крайней мере одного патрубка с вентилем; корпус выполнять разъемным и дополнительно использовать в виде системы замены полярной жидкости, при этом разъемный корпус использовать при замене диэлектрического покрытия, электромагнитных обмоток и электродов.
Использование в качестве рабочей среды, заполняющей тороидальный канал корпуса, полярной жидкости позволяет посредством ионизации обеспечивать высокую электропроводность рабочей среды и эксплуатировать генератор при сравнительно низких температурах, например при температурах ниже температуры кипения полярной жидкости, в качестве которой может быть использована дистиллированная вода, что приводит к существенному повышению эксплуатационной надежности генератора. Выполнение покрытия на внутренней поверхности тора из сегнетоэлектрика обеспечивает повышение электропроводности полярной жидкости, что приводит к повышению эффективности преобразования энергии. В качестве полярной жидкости может быть использована, например, дистиллированная вода или смесь дистиллированной воды и тяжелой воды. Сегнетоэлектрические вещества, например титанат бария, обладают повышенными значениями удельной диэлектрической проницаемости (более 6000 относительных единиц). При взаимодействии ионизированной полярной жидкости с покрытием из сегнетоэлектрика формируется мощное электрическое поле напряженностью порядка 10000 кВ/см и происходит пробой физического вакуума. При этом слой сегнетоэлектрика генерирует колебания частотой 25000 Гц, что способствует дальнейшему разложению молекулярных структур. Одновременно за счет бесконечных электростатических разрядов и пробоев в кавитационно-вакуумных структурах проходят реакции "холодного" ядерного синтеза с высвобождением значительной энергии (порядка 6 кДж/моль). Это приводит к ускорению процесса ионизации полярной жидкости и существенному повышению ее электропроводности. Кроме того, с поверхности сегнетоэлектрического потока полярной жидкости постоянно удаляются незавершенные электрические связи и благодаря этому в ней формируется упорядоченный поток электронов. Введение в состав генератора устройства ионизации полярной жидкости, выполненного в виде электродов, распределенных по длине тороидального канала и подключенных к высоковольтному источнику периодического напряжения, позволяет обеспечить значительное увеличение электропроводности рабочей среды, циркулирующей в тороидальном канале, что также приводит к повышению эффективности преобразования энергии. Циркуляция ионизированной полярной жидкости в тороидальном канале обеспечивается посредством электромагнитных обмоток возбуждения, выполняемых обычно в виде секций, распределенных по длине тора и подключенных к источнику переменного тока, при этом обмотки возбуждения создают бегущее магнитное поле. Для уменьшения потерь, обусловленных рассеянием магнитного поля, обмотки возбуждения предпочтительно размещать в полярной жидкости, заполняющей тороидальный канал, что будет способствовать повышению преобразования энергии. Движение жидкости при этом стабилизируется при помощи камеры, имеющей форму полого цилиндра, который радиально встроен в противолежащие стенки корпуса, и ось цилиндра проходит через центральную зону тора. Полярная жидкость, заполняющая цилиндр, сглаживает возмущения, возникающие в потоке полярной жидкости в процессе ее периодической ионизации высоковольтными разрядами. Использование электромагнитной обмотки, охватывающей внешнюю поверхность цилиндра и подключенной к источнику постоянного тока, позволяет сформировать постоянное магнитное поле, взаимодействие которого с потоком ионизированной жидкости приводит к дополнительному увеличению эффективности преобразования энергии. Выполнение высоковольтного источника периодического напряжения в устройстве ионизации полярной жидкости в виде параллельно включенных управляемого зарядного устройства, молекулярного накопителя электроэнергии с последовательно подключенным к нему управляемым выключателем и индуктивного накопителя электроэнергии с последовательно подключенным к нему управляемым выключателем позволяет обеспечить формирование мощных высоковольтных импульсов (за счет значительной электрической емкости молекулярного накопителя) с крутыми фронтами нарастания напряжения, обеспечиваемыми наличием индуктивного накопителя. Равномерное распределение электродов устройства ионизации полярной жидкости по длине тора позволяет равномерно ионизировать весь объем рабочей среды. Предпочтительно выполнять электромагнитные обмотки, управляемое зарядное устройство, молекулярный накопитель электроэнергии с управляемым выключателем и индуктивный накопитель электроэнергии с управляемым выключателем в виде единого функционального блока, что позволяет упростить конструкцию генератора и повысить его эксплуатационную надежность. Введение в состав генератора блока управления на микропроцессорах, подключаемого к зарядному устройству, выключателю молекулярного накопителя электроэнергии и к выключателю индуктивного накопителя электроэнергии, обеспечивает надежное функционирование устройства ионизации полярной жидкости при заданных параметрах и регулирование величины вырабатываемой генератором электроэнергии, например, за счет регулирования периодичности высоковольтных импульсов.
Предпочтительно вводить в состав генератора систему замены полярной жидкости, например, выполняемую в виде патрубков, снабженных вентилями, что позволяет обеспечить постоянную или периодическую замену полярной жидкости, заполняющей тор, и тем самым обеспечить бесперебойное функционирование генератора. При выполнении системы замены полярной жидкости в виде разъемного корпуса, кроме того, возможна замена сегнетоэлектрического покрытия, электродов системы ионизации и электромагнитных обмоток возбуждения после длительной эксплуатации генератора.
Приложенные чертежи изображают: фиг. 1 - общий вид МГД- генератора, фиг. 2 - поперечное сечение генератора.
Магнитогидродинамический генератор содержит: корпус 1 из диэлектрического материала, имеющий форму тора, внутренняя поверхность которого выполнена с покрытием 2 из сегнетоэлектрика, а внутренняя полость заполнена полярной жидкостью 3, устройство ее ионизации, состоящее из электродов 4, размещенных в полярной жидкости, и подключенного к ним высоковольтного источника периодического напряжения, выполненного из параллельно включенных управляемого зарядного устройства 5, молекулярного накопителя электроэнергии 6 и индуктивного накопителя электроэнергии 7, к которым последовательно подключены соответственно управляемые выключатели 8 и 9, электромагнитные обмотки возбуждения 10, размещенные в полярной жидкости и соединенные с источником переменного тока (не показан), создающие бегущее магнитное поле в полярной жидкости, камеру 11 стабилизации движения полярной жидкости, выполненную в виде полого цилиндра, радиально встроенного в противолежащие стенки тора (см. фиг. 1), по крайней мере одну силовую обмотку 12, присоединенную к нагрузке и охватывающую внешнюю поверхность тора, к которой подключен молекулярный накопитель электроэнергии 13, электромагнитную обмотку 14, охватывающую внешнюю поверхность цилиндра и подключенную к источнику постоянного тока 15.
Корпус 1, имеющий форму тора, изготавливается из диэлектрического материала, например из стеклопластика или оргстекла, при этом внутренняя поверхность тора выполнена с покрытием 2 из сегнетоэлектрика, в качестве которого может использоваться титанат бария. Тор 1 может быть выполнен герметичным. В противолежащие стенки тора 1 встроен полый цилиндр 11, изготавливаемый из того же материала, что и тор. Внутреннюю поверхность цилиндра 11 предпочтительно выполнять с покрытием из сегнетоэлектрика, при этом цилиндр 11 проходит через центральную зону тора 1. Внутренние полости тора 1 и цилиндра 11 частично или полностью заполняются полярной жидкостью, например смесью, состоящей из дистиллированной и тяжелой воды, при этом количество тяжелой воды составляет 5-10% вес. от общего веса смеси. Электромагнитные обмотки возбуждения 10 предпочтительно выполнять в виде секций, равномерно распределенных по длине тора 1. Обмотки 10 предпочтительно размещать в полярной жидкости 3, заполняющей тор 1. Электроды 4 устройства ионизации полярной жидкости изготавливаются из твердосплавных материалов. В качестве молекулярных накопителей электроэнергии 6 или 13 предпочтительно использовать отечественные накопители (см. Иванов А.М. и Герасимов А.Ф. "Молекулярные накопители электрической энергии на основе двойного электрического слоя", "Электричество", 1991, N 8, с.с. 16-19). Управляемые выключатели 8,9 предпочтительно выполнять из полупроводниковых элементов, например из тиристоров, что позволяет упростить силовые цепи и повысить эксплуатационную надежность устройства ионизации полярной жидкости.
Заявленный МГД-генератор работает следующим образом. Частично ионизированную полярную жидкость 3, заполняющую внутреннюю полость тора 1, дополнительно периодически ионизируют посредством высоковольтных разрядов, возникающих между электродами 4, которые запитывают от молекулярного накопителя электроэнергии 6 и от индуктивного накопителя электроэнергии 7, периодически заряжаемых в паузах между разрядами от управляемого зарядного устройства 5. При этом разряды могут производиться от молекулярного накопителя электроэнергии 6 после замыкания сигналом, поступающим с блока управления (не показан) выключателя 8 при разомкнутом выключателе 9. Разряды могут производиться и от индуктивного накопителя электроэнергии 7, который предварительно заряжается от накопителя 6 при размыкании управляемого выключателя 9. С помощью электромагнитных обмоток возбуждения 10, подключенных к источнику переменного тока (не показан) в полярной жидкости 3 формируется бегущее магнитное поле, которое создает движение полярной жидкости в одном направлении по тороидальному каналу корпуса 1. За счет электромагнитной индукции в силовых обмотках 12 наводится ЭДС и в полезную электрическую нагрузку поступает вырабатываемая генератором энергия. Одновременно производится подзарядка молекулярных накопителей электроэнергии 13, являющихся буферными элементами между силовыми обмотками 12 (на чертеже указана только одна из них) и нагрузкой, которая может содержать импульсные и повторно-кратковременные потребители энергии. Камера 11 стабилизирует поток движения полярной жидкости 3 в тороидальном канале 1, при этом используется взаимодействие электронных зарядов цилиндра 11 с зарядами в торе 1. В тороидальном канале 1 возникают свободные электроны, при этом выделяется избыточная энергия в полярной жидкости 3 и в слое сегнетоэлектрика, которые подлежат замене по мере расходования.
В сравнении с известным заявленный МГД-генератор позволяет повысить эффективность преобразования энергии более чем на 10%. Кроме того, за счет существенного снижения температуры рабочей среды генератора и упрощения его конструкции увеличилась эксплуатационная надежность генератора. Заявленный генератор является компактным устройством, не требующим постоянного обслуживания, при этом он может использоваться в передвижных установках и имеет срок службы не менее 10 лет.

Claims (9)

1. МГД-генератор, содержащий корпус из диэлектрического материала, имеющий форму тора, внутренняя поверхность которого выполнена с покрытием из сегнетоэлектрика и заполнена полярной жидкостью, соединенные с источником переменного тока обмотки возбуждения, создающие бегущее магнитное поле в полярной жидкости, устройство ионизации полярной жидкости, состоящее из электродов, размещенных в полярной жидкости, и подключенного к ним высоковольтного источника периодического напряжения, выполненного из параллельно включенных управляемого зарядного устройства, молекулярного накопителя электроэнергии с последовательно подключенным управляемым выключателем и индуктивного накопителя электроэнергии с последовательно подключенным управляемым выключателем, по крайней мере, одну присоединенную к нагрузке силовую обмотку, охватывающую внешнюю поверхность тора, с подключенным к ней другим молекулярным накопителем электроэнергии, и камеру стабилизации движения полярной жидкости, выполненную в виде полого цилиндра, встроенного радиально в противолежащие стенки тора, и охваченного электромагнитной обмоткой, подключенной к источнику постоянного тока.
2. Генератор по п.1, отличающийся тем, что обмотки возбуждения размещены в полярной жидкости.
3. Генератор по п. 1 или 2, отличающийся тем, что обмотки возбуждения выполнены в виде секций, равномерно распределенных по тору.
4. Генератор по п.1, отличающийся тем, что электроды устройства ионизации равномерно распределены по тору.
5. Генератор по п.1, отличающийся тем, что внутренняя поверхность цилиндра камеры стабилизации движения полярной жидкости выполнена с покрытием из сегнетоэлектрика.
6. Генератор по п.1, отличающийся тем, что электромагнитные обмотки, молекулярный накопитель электроэнергии с управляемым выключателем и индуктивный накопитель электроэнергии с управляемым выключателем выполнены в виде единого функционального блока.
7. Генератор по п.1, отличающийся тем, что он дополнительно снабжен системой замены полярной жидкости.
8. Генератор по п. 7, отличающийся тем, что система замены полярной жидкости выполнена в виде, по крайней мере, одного патрубка с вентилем.
9. Генератор по п. 7, отличающийся тем, что система замены полярной жидкости выполнена в виде разъемного корпуса.
RU2001106128A 2001-03-06 2001-03-06 Мгд-генератор RU2174735C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001106128A RU2174735C1 (ru) 2001-03-06 2001-03-06 Мгд-генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001106128A RU2174735C1 (ru) 2001-03-06 2001-03-06 Мгд-генератор

Publications (1)

Publication Number Publication Date
RU2174735C1 true RU2174735C1 (ru) 2001-10-10

Family

ID=20246810

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001106128A RU2174735C1 (ru) 2001-03-06 2001-03-06 Мгд-генератор

Country Status (1)

Country Link
RU (1) RU2174735C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516433C2 (ru) * 2012-03-19 2014-05-20 Федор Камильевич Глумов Мгд-генератор
RU2813004C1 (ru) * 2023-03-04 2024-02-06 Алексей Викторович Рекунов Магнитогидродинамический генератор переменного тока

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ДЖ.ГАРДНЕР. Электричество без динамомашины, пер. с англ. - М.: Мир, 1965, с.74 - 80, фиг.13. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516433C2 (ru) * 2012-03-19 2014-05-20 Федор Камильевич Глумов Мгд-генератор
RU2813004C1 (ru) * 2023-03-04 2024-02-06 Алексей Викторович Рекунов Магнитогидродинамический генератор переменного тока

Similar Documents

Publication Publication Date Title
WO2002026622A1 (en) Ozone generator
Dimov et al. A 100 mA negative hydrogen-ion source for accelerators
RU2174735C1 (ru) Мгд-генератор
RU2671720C2 (ru) Устройство получения водородной и кислородной воды
RU2183899C2 (ru) Способ получения электрической энергии и мгд-генератор грицкевича для его осуществления
RU2363653C1 (ru) Устройство для генерации озона при помощи импульсного барьерного разряда
RU99118347A (ru) Способ получения электрической энергии и мгд-генератор грицкевича для его осуществления
RU2127220C1 (ru) Озонатор и генератор озона
RU2065246C1 (ru) Электрогазодинамический генератор-2
RU2029423C1 (ru) Способ получения генерации в газовом электроразрядном лазере и газовый электроразрядный лазер
SU1754648A1 (ru) Способ получени озона и устройство дл его осуществлени
Sack et al. Modular trigger generator for an overvoltage-triggered Marx generator
SU66073A1 (ru) Электростатический генератор
RU2675862C2 (ru) Способ разложения воды на кислород и водород и устройства для его осуществления
RU91498U1 (ru) Газовый реактор с свч-возбуждением
KR102086335B1 (ko) 주파수 가변에 의해 오존 발생량을 제어할 수 있는 오존 발생장치
US3737688A (en) Changing capacity electric generator
RU2109393C1 (ru) Способ получения электрической энергии и резонансный мгд-генератор для его реализации
JPH0232515A (ja) プラズマx線発生装置
KR100344988B1 (ko) 고전압 임펄스를 이용한 가스 중 방전형성장치
RU2071163C1 (ru) Способ получения электрической энергии и мгд-генератор для его реализации
RU2144723C1 (ru) Импульсно-периодический электроразрядный лазер
JPS56134789A (en) Lateral exciting type laser oscillator
RO134599B1 (ro) Dronă cu propulsie ionică
RU2002335C1 (ru) Устройство дл пр мого преобразовани тепловой энергии в электрическую