RU2174163C1 - Способ электролитического осаждения сплава железо - молибден - Google Patents

Способ электролитического осаждения сплава железо - молибден

Info

Publication number
RU2174163C1
RU2174163C1 RU2000104387A RU2000104387A RU2174163C1 RU 2174163 C1 RU2174163 C1 RU 2174163C1 RU 2000104387 A RU2000104387 A RU 2000104387A RU 2000104387 A RU2000104387 A RU 2000104387A RU 2174163 C1 RU2174163 C1 RU 2174163C1
Authority
RU
Russia
Prior art keywords
deposition
coatings
iron
electrolyte
ammonium molybdate
Prior art date
Application number
RU2000104387A
Other languages
English (en)
Inventor
В.И. Серебровский
Л.Н. Серебровская
В.В. Серебровский
Н.В. Коняев
А.Н. Батищев
Original Assignee
Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова
Filing date
Publication date
Application filed by Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова filed Critical Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова
Application granted granted Critical
Publication of RU2174163C1 publication Critical patent/RU2174163C1/ru

Links

Abstract

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, в частности железомолибденовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Осаждение ведут на переменном асимметричном токе с коэффициентом асимметрии 1,2-6 из электролита, содержащего, г/л: хлористое железо - 350-400; молибдат аммония - 0,2-1,2; лимонная кислота - 2-8, соляная кислота 0,5-2, при 20-50°С и катодной плотности тока 35-40 А/дм2. Технический результат - повышение микротвердости, силы сцепления покрытия с основой и скорости осаждения при низкой температуре.

Description

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железомолибденовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.
Известен способ электролитического осаждения из хлористого электролита железнения, содержащего 200-250 г/л хлористого железа и 2-3 г/л соляной кислоты. (Мелков М.П. Твердое осталивание автотракторных деталей. М., "Транспорт", 1971, с. 19- 20). Электролит работает при температуре 60-80oC и обеспечивает получение покрытий со значением микротвердости 4500-6500 МПа. Недостатком данного способа является высокая температура и получение покрытия с низкой микротвердостью поверхности.
За прототип взят способ осаждения из электролита, содержащего молибдат натрия 30 г/л, сернокислое железо 2-10 г/л, лимонную кислоту 20 г/л, аммиак 3-9 г/л. Электролит работает при 40-60oC и позволяет получать покрытия микротвердостью до 7000 МПа при интервале катодных плотностей тока 0,7-1 А/дм2 (Вячеславов П.М. Электролитическое осаждение сплавов. Л., "Машиностроение", 1977, с. 71-72).
Этот способ малопроизводителен и экономически неэффективен при осаждении покрытий, т. к. имеет низкий интервал катодных плотностей постоянного тока, низкую скорость осаждения и слабую сцепляемость покрытия с основой, а также необходимость подогрева электролита.
Для получения покрытий высокого качества с повышенной микротвердостью и сцепляемостью, для повышения производительности труда за счет повышения скорости осаждения и проведения процесса электролиза при низкой температуре предлагается способ электролитического осаждения сплава железо-молибден из электролита, содержащего соль железа, соль молибденовой кислоты, лимонную кислоту и воду. Новым является то, что осаждение ведут на переменном асимметричном токе с коэффициентом асимметрии 1,2-6 при 20-50oC и интервале катодных плотностей тока 35-40 А/дм2 из электролита, дополнительно содержащего соляную кислоту. В качестве соли железа берут хлористое железо (II), в качестве соли молибденовой кислоты - молибдат аммония, при следующем соотношении компонентов, г/л:
Хлористое железо - 350-400
Молибдат аммония - 0,2-1,2
Лимонная кислота - 2-8
Соляная кислота - 0,5-2,0
Данный электролит получают соединением хлористого железа и молибдата-цитратного комплекса. Молибдата-цитратный комплекс предварительно получают из молибдата аммония и лимонной кислоты. Количество молибдата аммония находится в интервале 0,2-1,2 г/л. Ниже 0,2 г/л применение молибдата аммония нецелесообразно, т.к. получаемые покрытия по микротвердости близки к покрытиям твердым железом. Выше 1,2 г/л применение молибдата аммония приводит к образованию окислов молибдена, что резко ухудшает качество покрытия, снижает микротвердость покрытия. Наиболее оптимальным является содержание молибдата аммония 0,8 г/л. Получаемое покрытие имеет микротвердость порядка 8400 МПа.
Содержание лимонной кислоты находится в пределах 2-8 г/л. Нижний предел обусловлен тем, что лимонная кислота является связующим звеном молибдата аммония и хлористого железа и при концентрации менее 2 г/л не происходит связи в соединении, не получается качественный электролит. Верхний предел ограничен с экономической точки зрения, т.к. при концентрации больше 8 г/л лимонной кислоты не происходит изменения качества электролита и покрытия. Лимонная кислота выступает в электролите как стабилизатор и предотвращает образование трехвалентного железа.
Концентрация хлористого железа находится в пределах 350-400 г/л. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности. (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77 - 79).
Для поддержания кислотности электролита добавляется соляная кислота в количестве 0,5 - 2 г/л. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам электролитического сплава. При содержании соляной кислоты меньше 0,5 г/л происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытие и этим ухудшает его структуру. Наиболее оптимальным вариантом данного электролита является содержание соляной кислоты 1,5 г/л.
Асимметричный ток дает возможность вести процесс при пониженной температуре 20 - 50oC. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения низкая. Выше 50oC использовать осаждение покрытий невыгодно, т.к. получаемые покрытия имеют низкую микротвердость.
Катодная плотность тока находится в пределах 35 - 40 А/дм2. Ниже 35 А/дм2 плотность тока использовать нецелесообразно, т.к. процесс имеет низкую скорость осаждения покрытия. При катодной плотности тока больше 40 А/дм2 происходит интенсивное дендритообразование и снижается выход по току.
Процесс осаждения покрытия происходит на переменном асимметричном токе с коэффициентом асимметрии 1,2 - 6. Начало осаждения проходит 2 - 3 минуты при коэффициенте асимметрии β = 1,2 - 1,5. При этом образуется покрытие пониженной твердости, которое имеет высокую сцепляемость с основой.
Gсц = 300МПа. Потом происходит постепенное уменьшение анодной составляеющей до коэффициента асимметрии β = 6, который характеризуется стабильной скоростью осаждения и высокой микротвердостью покрытия. Дальнейшее повышение β не рекомендуется, т.к. процесс не отличается от осаждения на постоянном токе.
На основе проведенных испытаний оптимальным режимом являются условия, приведенные в примере.
Для получения электролита сначала готовится молибдатоцитратный комплекс, включающий молибдат аммония 0,8 г/л и лимонную кислоту 5 г/л. Потом полученный комплекс соединяют с хлористым железом 350 г/л и соляной кислотой 1,5 г/л. Хлористое железо, молибдат аммония и лимонная кислота растворяются в дистиллированной воде. Анодом служит малоуглеродистая сталь. Предварительно деталь подвергается обезжириванию венской известью и анодной обработке в растворе 30% серной кислоты. Электроосаждение происходит при 40oC на переменном асимметричном токе с начальным коэффициентом асимметрии 1,2 в течение 2-3 мин и последующим осаждением при β = 5 с катодной плотностью тока 40 А/дм2.
Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.

Claims (1)

  1. Способ электролитического осаждения сплава железо - молибден из электролита, содержащего соль железа, соль молибденовой кислоты, лимонную кислоту и воду, отличающийся тем, что осаждение ведут на переменном асимметричном токе с коэффициентом асимметрии 1,2 - 6 при 20 - 50°С и интервале катодных плотностей тока 35-40 А/дм2 из электролита, дополнительно содержащего соляную кислоту, при этом в качестве соли железа берут хлористое железо (II), а в качестве соли молибденовой кислоты - молибдат аммония, при следующем соотношении компонентов, г/л:
    Хлористое железо (II) - 350 - 400
    Молибдат аммония - 0,2-1,2
    Лимонная кислота - 2 - 8
    Соляная кислота - 0,5 - 2,0
RU2000104387A 2000-02-22 Способ электролитического осаждения сплава железо - молибден RU2174163C1 (ru)

Publications (1)

Publication Number Publication Date
RU2174163C1 true RU2174163C1 (ru) 2001-09-27

Family

ID=

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВЯЧЕСЛАВОВ П.М. Электролитическое осаждение сплавов. -Л.: Машиностроение, 1977, с.72. *

Similar Documents

Publication Publication Date Title
US2432893A (en) Electrodeposition of nickeltungsten alloys
CN103757672B (zh) 一种锌锡合金电镀方法
CN101387000A (zh) 无氰预镀铜工艺方法
US2693444A (en) Electrodeposition of chromium and alloys thereof
JPS6038478B2 (ja) 金‐コバルト合金を電気めつきする方法
US20070295608A1 (en) Electrolytic Method For Phosphating Metallic Surfaces And Metall Layer Phosphated Thereby
US4690735A (en) Electrolytic bath compositions and method for electrodeposition of amorphous chromium
RU2174163C1 (ru) Способ электролитического осаждения сплава железо - молибден
JPS60228693A (ja) Zn−Ni合金めつき鋼板の製造方法
RU2239672C2 (ru) Способ электролитического осаждения сплава железо-молибден-кобальт
US2546150A (en) Method for securing adhesion of electroplated coatings to a metal base
RU2169799C1 (ru) Электролит для осаждения покрытия
RU2192509C2 (ru) Способ электролитического осаждения сплава железо-вольфрам
Narasimhamurthy et al. Electrodeposition of zinc-iron from an alkaline sulfate bath containing triethanolamine
RU2705843C1 (ru) Способ электролитического осаждения сплава железо-бор
RU2401328C1 (ru) Способ электролитического осаждения сплава железо-ванадий-кобальт
RU2230836C1 (ru) Способ электролитического осаждения сплава железо-кобальт
RU2263727C2 (ru) Способ электролитического осаждения сплава железо - алюминий
RU2241074C1 (ru) Способ электролитического осаждения сплава железо-марганец-фосфор
RU2285065C1 (ru) Способ электролитического осаждения сплава железо-хром
RU2231578C1 (ru) Способ электролитического осаждения сплава железо-ванадий
RU2230139C1 (ru) Способ электролитического осаждения сплава железо-титан
US2432894A (en) Electrodeposition of iron-tungsten alloys
RU2250935C1 (ru) Электролит для осаждения покрытия
JP2522101B2 (ja) ニッケル―モリブデン合金めっき浴及びめっき方法