RU2173865C1 - Корабельная гидролокационная станция - Google Patents
Корабельная гидролокационная станцияInfo
- Publication number
- RU2173865C1 RU2173865C1 RU2000113638A RU2000113638A RU2173865C1 RU 2173865 C1 RU2173865 C1 RU 2173865C1 RU 2000113638 A RU2000113638 A RU 2000113638A RU 2000113638 A RU2000113638 A RU 2000113638A RU 2173865 C1 RU2173865 C1 RU 2173865C1
- Authority
- RU
- Russia
- Prior art keywords
- input
- output
- gate
- block
- generator
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 17
- 230000001702 transmitter Effects 0.000 claims abstract description 13
- 239000000969 carrier Substances 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000000051 modifying Effects 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 26
- 241001646071 Prioneris Species 0.000 description 3
- 230000001360 synchronised Effects 0.000 description 3
- 230000000875 corresponding Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Abstract
Изобретение относится к гидроакустическим средствам кораблевождения, а также обнаружения и определения координат подводных объектов. Достигаемым техническим результатом является сокращение размеров мертвой зоны корабельной ГАС, обусловленной реверберацией моря, а также увеличение вероятности определения координат подводных объектов, в том числе сохранение гидроакустического контакта с ними при увеличении скорости хода корабля-носителя гидролокационной станции, преследующего уклоняющийся от обнаружения объект. Для этого в известной корабельной гидролокационной станции, содержащей излучающую акустическую антенну, генератор с частотной модуляцией сигналов, последовательно соединенные приемную акустическую антенну, смеситель, блок усилителей и многоканальный анализатор спектра и последовательно соединенные видеоусилитель и индикатор кругового обзора, второй вход которого соединен с вторым выходом приемной антенны, дополнительно введены второй генератор, приемник, передатчик, переключатель режимов, вычислитель, три блока ИЛИ, блок НЕ и четыре блока И, причем первый выход переключателя режимов соединен с входом видеоусилителя через первый блок И, вычислитель и первый блок ИЛИ, второй вход которого соединен с выходом анализатора спектра через второй блок И, второй вход второго блока И соединен с первым выходом переключателя режимов через блок НЕ, второй вход смесителя соединен с первым выходом переключателя режимов через приемник, второй генератор и второй блок ИЛИ, второй вход которого соединен с выходом первого генератора через третий блок И, второй вход третьего блока И соединен с выходом блока НЕ, второй выход переключателя режимов соединен с входом передатчика через четвертый блок И, второй вход которого соединен с выходом третьего блока И, третий вход индикатора кругового обзора соединен с выходом второго генератора через третий блок ИЛИ, второй вход которого соединен с выходом излучающей акустической антенны, второй вход первого блока И соединен с выходом анализатора спектра, вход излучающей акустической антенны соединен с выходом третьего блока И, второй вход вычислителя соединен с вторым выходом приемной акустической антенны. 1 ил.
Description
Изобретение относится к гидроакустическим средствам кораблевождения, а также обнаружения и определения координат подводных объектов.
Известны шумопеленгаторные станции, предназначенные для обнаружения объектов, движущихся в воде, их классификации и определения пеленга на них за счет приема энергии шумового поля, создаваемого объектом.
Шумопеленгаторные станции содержат приемную акустическую антенну с матрицей формирования характеристики ее направленности, полосовой фильтр, детектор, интегратор, служащий для уменьшения флуктуации постоянной составляющей помехи [см., например, Справочник по гидроакустике/ А.П. Евтюхов, А. Е. Колесников, Е.А. Корепин и др. - Л.: Судостроение, 1988, стр. 26 - 30].
Основными достоинствами таких гидроакустических станций являются большая дальность обнаружения объектов при высокой помехоустойчивости и высокая точность пеленгования, составляющая от десятых долей градуса до 1...2o. Однако решения-аналоги имеют ряд недостатков, снижающих эффективность кораблей, оснащенных такими гидроакустическими станциями. Основным недостатком является невозможность определения важнейшего элемента движения объекта - цели - дальности до него, что существенно затрудняет и усложняет определение координат объекта.
Недостатком решений-аналогов является и невозможность обнаружения объектов, практически не создающих шумового поля (затопленные суда, скальные выступы дна, гидротехнические сооружения и т.д.). Кроме того, использование решений-аналогов на наводных кораблях чрезвычайно затруднено сложной помехосигнальной обстановкой, в особенности на средних и больших ходах, когда они практически неработоспособны.
Отмеченные недостатки частично устранены в гидролокационной станции (ГАС) с непрерывным излучением и частичной модуляцией сигналов, содержащей излучающую акустическую антенну, генератор с частотной модуляцией сигналов, последовательно соединенные приемную акустическую антенну, смеситель, блок усилителей и многоканальный анализатор спектра и последовательно соединенные видеоусилитель и индикатор кругового обзора, второй вход которого соединен с вторым выходом приемной антенны [Справочник по гидроакустике/ А.П. Евтюхов, А. Е. Колесников, Е.А. Корепин и др. - Л.: Судостроение, 1988 - (Библиотека инженера-гидроакустика), стр. 22 - прототип].
В решении-прототипе генератор вырабатывает колебания, частота которых в течение заданного периода меняется по пилообразному закону. Эти колебания подаются на излучающую антенну и в смеситель приемного тракта. В смесителе вырабатываются комбинационные частоты излучаемых в данный момент и принимаемых, отраженных от цели, колебаний. С помощью фильтра выделяется разностная частота, пропорциональная дистанции до цели. Неравномерность затухания частот спектра при распространении в среде компенсируется путем ограничения или выравнивания при усилении. Далее сигнал поступает на динамик для прослушивания и на многоканальный анализатор спектра. Выходы фильтров последовательно опрашиваются, и через видеоусилитель сигналы подаются на управляющий электрод электронно-лучевой трубки (ЭЛТ) индикатора кругового обзора. Синхронно с опросом каналов анализатора происходит радиальная развертка луча. Одновременно, синхронно с вращением антенны в плоскости обзора луч на экране ЭЛТ разворачивается по окружности (что обеспечивается соединением второго входа индикатора кругового обзора с вторым выходом приемной акустической антенны). Положение отметки от цели на экране индикатора характеризует курсовой угол цели и дистанцию до нее.
Основным достоинством решения-прототипа является возможность определения дистанции до объекта поиска независимо от величины энергии его акустического поля. Однако решение-прототип не устраняет недостатка решений-аналогов, связанного с их неработоспособностью на средних и больших ходах корабля-носителя ГАС.
Кроме того, реверберация моря, являющаяся результатом рассеяния звука на неоднородностях морской среды и ее границ при работе ГАС в активном режиме, выступает в качеств помехи работы таких ГАС. Вследствие этого, для решения-прототипа имеет место значительная "мертвая" зона вокруг носителя ГАС, в которой полезный сигнал не может быть выявлен на фоне помехи. Вторым недостатком решения-прототипа является то, что уклоняющийся от обнаружения объект (например, подводная лодка) может, сообразуясь с условиями распространения звука в воде, выходить из зоны обнаружения ГАС. Иллюстрацией такого положения могут служить факты столкновения подводных лодок (несмотря на работу по крайней мере ГАС одной из лодок в режиме активного поиска). Корабль же, осуществляющий поиск, вынужден увеличивать ход для восстановления гидроакустического контакта с уклоняющимся объектом, что приводит к неработоспособности его ГАС.
Задачей заявляемого изобретения является устранение отмеченных недостатков, а именно сокращение размеров "мертвой" зоны корабельной ГАС, а также увеличение вероятности определения координат подводных объектов, в том числе возможности сохранения гидроакустического контакта с ними при увеличении скорости хода корабля-носителя ГАС, преследующего уклоняющийся объект.
Технический результат достигается включением новых аппаратурных блоков и иной связью между блоками в корабельной гидролокационной станции, содержащей излучающую акустическую антенну, генератор с частотной модуляцией сигналов, последовательно соединенные приемную акустическую антенну, смеситель, блок усилителей и многоканальный анализатор спектра и последовательно соединенные видеоусилитель и индикатор кругового обзора, второй вход которого соединен с вторым выходом приемной антенны, заключающихся в том, что в нее дополнительно введены второй генератор, приемник, передатчик, переключатель режимов, вычислитель, три блока ИЛИ, блок НЕ и четыре блока И, причем первый вход переключателя режимов соединен с входом видеоусилителя через первый блок И, вычислитель и первый блок ИЛИ, второй вход которого соединен с выходом анализатора спектра через второй блок И, второй вход второго блока И соединен с первым выходом переключателя режимов через блок НЕ, второй вход смесителя соединен с первым выходом переключателя режимов через приемник, второй генератор и второй блок ИЛИ, второй вход которого соединен с выходом первого генератора через третий блок И, второй вход третьего блока И соединен с выходом блока НЕ, второй выход переключателя режимов соединен с входом передатчика через четвертый блок И, второй вход которого соединен с выходом третьего блока И, третий вход индикатора кругового обзора соединен с выходом второго генератора через третий блок ИЛИ, второй вход которого соединен с выходом излучающей акустической антенны, второй вход первого блока И соединен с выходом анализатора спектра, вход излучающей акустической антенны соединен с выходом третьего блока И, второй вход вычислителя соединен с вторым выходом приемной акустической антенны.
Идея предложенного технического решения заключается в обеспечении возможности попеременной работы размещенных на двух кораблях ГАС на излучение и соответственно на прием гидроакустических сигналов с частотной модуляцией их несущей частоты. В таком случае принимающая сигналы ГАС свободна от приема шумов, обусловленных реверберацией моря в непосредственной близости от принимающей акустической антенны, а также свободна от приема шумов корабля-носителя излучающей ГАС. Очевидно, что "мертвая" зона принимающей ГАС практически отсутствует, а преследующий уклоняющийся от обнаружения объект корабль-носитель излучающей ГАС может не учитывать в своих маневрах акустическое поле, создаваемое им на большой скорости хода. Очевидно также, что для обеспечения такого режима работы двух ГАС их работа должна быть синхронизирована. Это обеспечивается введением в состав ГАС передатчика и приемника электромагнитных волн, скоростью распространения которых по сравнению со скоростью звука в воде можно пренебречь.
Покажем существенность отличительных признаков.
Введение второго генератора, приемника, переключателя режимов и соединение второго входа смесителя с первым выходом переключателя режимов через приемник, второй генератор и второй блок ИЛИ является новым решением. Оно обеспечивает при работе ГАС в режиме приема сигналов, излучаемых другой ГАС, передачу в смеситель колебаний, частота которых, как и в решении-прототипе, меняется по пилообразному закону. При этом второй генератор фактически воспроизводит колебания генератора с частотной модуляцией сигналов ГАС другого корабля. Введение второго генератора обеспечивает как "экономию" ресурса первого генератора, так и экономию энергии: второй генератор может быть маломощным, обеспечивающим лишь работу смесителя, а не излучающей акустической антенны.
Введение вычислителя и соединение первого выхода переключателя режимов с входом видеоусилителя через первый блок И, вычислитель и первый блок ИЛИ и соединение второго входа вычислителя с вторым выходом приемной акустической антенны является новым решением. Оно обеспечивает при работе ГАС в режиме приема сигналов, излучаемых ГАС другого, ведущего поиск корабля, возможность определять дальность до объекта поиска относительно приемной акустической антенны. (В решении-прототипе дальность определяется по существу по времени распространения звука удвоенного расстояния между объектом и ГАС. В предлагаемом решении, когда излучающая и приемные антенны разнесены, дальность должна определяться иначе).
Введение передатчика и соединение его входа с вторым выходом переключателя режимов через четвертый блок И является новым решением. Оно обеспечивает синхронизацию работы двух ГАС путем передачи информации о текущих параметрах колебаний, формируемых генератором излучающей ГАС, на вход приемника работающей только на прием другой ГАС.
Введение остальных блоков И, ИЛИ и НЕ и соединение их с другими блоками ГАС является новым решением. Оно обеспечивает возможность переключения режимов работы ГАС и ее функционирования в каждом из режимов "излучение и прием" и только "прием".
Сущность предлагаемого технического решения поясняется чертежом, на котором представлена схема предлагаемой корабельной гидролокационной станции.
Корабельная гидролокационная станция содержит:
1 - приемная акустическая антенна;
2 - смеситель;
3 - блок усилителей;
4 - индикатор кругового обзора;
5 - видеоусилитель;
6 - многоканальный анализатор спектра;
7 - излучающая акустическая антенна;
8 - генератор с частотной модуляцией сигналов.
1 - приемная акустическая антенна;
2 - смеситель;
3 - блок усилителей;
4 - индикатор кругового обзора;
5 - видеоусилитель;
6 - многоканальный анализатор спектра;
7 - излучающая акустическая антенна;
8 - генератор с частотной модуляцией сигналов.
Блоки 1. . .8 характеризуют прототип. Дополнительно к ним в корабельную гидролокационную станцию введены новые узлы и блоки.
9 - вычислитель. В качестве него может быть использован любой вычислитель с двумя входами, реализующий алгоритм вычисления дальности до объекта поиска с помощью соотношения
где X - дальность до объекта поиска;
d - суммарная длина пути, проходимого в воде прямой звуковой волной от излучающей акустической антенны корабля-носителя излучающей ГАС до объекта поиска и отраженной звуковой волной от объекта поиска до принимающей акустической антенны корабля-носителя ГАС, работающей только на прием;
а - длина пути, проходимого прямой звуковой волной от излучающей акустической антенны корабля-носителя излучающей ГАС до принимающей акустической антенны корабля-носителя ГАС, работающей только на прием;
α - угол между направлением на излучающую ГАС и направлением на объем поиска. Иными словами, это разность курсовых углов на объект поиска и на излучающий акустические колебания корабль-носитель излучающей ГАС.
где X - дальность до объекта поиска;
d - суммарная длина пути, проходимого в воде прямой звуковой волной от излучающей акустической антенны корабля-носителя излучающей ГАС до объекта поиска и отраженной звуковой волной от объекта поиска до принимающей акустической антенны корабля-носителя ГАС, работающей только на прием;
а - длина пути, проходимого прямой звуковой волной от излучающей акустической антенны корабля-носителя излучающей ГАС до принимающей акустической антенны корабля-носителя ГАС, работающей только на прием;
α - угол между направлением на излучающую ГАС и направлением на объем поиска. Иными словами, это разность курсовых углов на объект поиска и на излучающий акустические колебания корабль-носитель излучающей ГАС.
Такие вычислители координат известны и широко применяются в гидроакустической технике. [См. , например, Простаков А.П. Электронный ключ к океану (Гидроакустическая техника сегодня). -Л.: Судостроение, 1986, стр. 139].
10 - переключатель режимов. В качестве него может быть использован простейший командный прибор в виде коммутатора с двумя выходами, обеспечивающий три режима функционирования:
а) ни на одном выходе нет сигнала;
б) на первом выходе есть сигнал, на втором - нет;
в) на первом выходе нет сигнала, на втором - есть.
а) ни на одном выходе нет сигнала;
б) на первом выходе есть сигнал, на втором - нет;
в) на первом выходе нет сигнала, на втором - есть.
Описание командных приборов, работающих в ручном и автоматическом (программном) режиме, приведено, в частности, в [Боевая авиационная техника: Авиационное вооружение/ под ред. Д.И. Гладкова. - М.: Воениздат, 1987, стр. 222].
11 - передатчик. В качестве него может использоваться, в частности, радиопередатчик из комплекса средств связи корабля;
12 - приемник. В качестве него может использоваться радиоприемник из комплекса средств связи корабля.
12 - приемник. В качестве него может использоваться радиоприемник из комплекса средств связи корабля.
13 - второй генератор. Второй генератор 13 аналогичен генератору 8 с частотной модуляцией сигналов. Его отличает только то, что его колебания синхронизированы с колебаниями другого генератора, причем синхронизация осуществляется по радио, аналогично тому, как генератор строчной/кадровой развертки телевизионного приемника синхронизирован с генератором строчной/кадровой развертки телевизионного передатчика на телецентре.
14, 15, 16 и 17 - соответственно первый, второй, третий и четвертый блоки И с двумя входами каждый.
18 - блок НЕ.
19, 20 и 21 - соответственно первый, второй и третий блоки ИЛИ с двумя входами каждый.
Корабельная гидроакустическая станция функционирует следующим образом.
В основном штатном режиме работы на выходах переключателя режимов 10 сигнал отсутствует. Поэтому на втором входе второго блока И 15 и втором входе третьего блока И 16 сигнал присутствует, а на первом входе первого блока И 14 и первом входе четвертого блока И 17 сигнал отсутствует. Гидролокационная станция работает аналогично решению-прототипу. Первый генератор 8 вырабатывает колебания, частота которых в течение заданного периода меняется по пилообразному закону. Эти колебания через третий блок И 16 подаются на излучающую акустическую антенну 7 и на второй вход второго блока ИЛИ 20, а через него - на второй вход смесителя 2. Сигнал о начале периода излучения акустических колебаний с выхода излучающей антенны 7 через второй вход третьего блока ИЛИ 21 подается на третий вход индикатора кругового обзора 4, на котором визуально отображается "распространение" посылки. Отраженные от объектов колебания принимаются приемной антенной 1 и сигнал, содержащий информацию о частоте принимаемых колебаний с ее первого выхода, поступает на первый вход смесителя 2, в котором вырабатываются комбинационные частоты колебаний, излучаемых в данный момент и принимаемых, отраженных от объекта. Сигнал, содержащий информацию об указанных комбинационных частотах, поступает на вход блока усилителей 3, в котором с помощью фильтров выделяется разностная частота, пропорциональная дистанции до объекта. Далее сигнал поступает на динамик для прослушивания и на вход многоканального анализатора спектра 6. Поскольку на первом входе первого блока И 14 в этом режиме сигнал отсутствует, то с выхода многоканального анализатора спектра 6 сигналы поступают на вход видеоусилителя 5 только через второй блок И 15 и первый блок ИЛИ 19. С выхода видеоусилителя 5 сигналы поступают на первый вход индикатора кругового обзора 4, а через него - на управляющий электрод его ЭЛТ. Синхронно с опросом каналов анализатора спектра 6 происходит радиальная развертка луча. Одновременно луч ЭЛТ разворачивается по окружности в соответствии с вращением антенны 1, что обеспечивается поступлением сигналов на второй вход индикатора кругового обзора 4 с второго выхода антенны 1. Положение отметки от объекта поиска на экране индикатора 4 характеризует курсовой угол объекта и дистанцию до него.
Так работает и прототип. В случае поиска объекта двумя кораблями гидролокационные станции каждого из них работают в указанном режиме. В предлагаемом решении обеспечивается дополнительный режим работы корабельной гидролокационной станции. В этом режиме на одном из двух кораблей устанавливается режим работы ГАС, при котором на первом выходе переключателя режимов 10 сигнал отсутствует, а на втором выходе - присутствует. В этом случае работа ГАС этого корабля отличается от работы решения-прототипа лишь тем, что сигналы с выхода первого генератора 8 через третий блок И 16 и четвертый блок И 17 поступают на вход передатчика 11, который излучает в окружающее корабль воздушное пространство электромагнитные колебания, соответствующие колебаниям, генерируемым первым генератором 8. На втором же корабле устанавливается режим, при котором на первом выходе переключателя режимов 10 его ГАС сигнал присутствует, а на втором - отсутствует. В этом случае на первом входе первого блока И 14 сигнал присутствует, а на втором входе второго блока И 15, втором входе третьего блока И 16 и первом входе четвертого блока И 17 сигналы отсутствуют. Поэтому на вход излучающей антенны 7 сигнал не подается и она не излучает.
Сигнал с первого выхода переключателя режимов 10 поступает на вход приемника 12, который принимает электромагнитные колебания, передаваемые передатчиком 11 первого корабля. Сигналы, содержащие информацию об этих колебаниях, поступают с выхода приемника 12 на вход второго генератора 13, в котором генерируются колебания, идентичные колебаниям, генерируемым первым генераторам 8 ГАС первого корабля. Очевидно, что при этом атмосферные помехи не оказывают влияния на параметры колебаний, генерируемых вторым генератором 13, поскольку сигналы на его входе лишь синхронизируют его работу с работой первого генератора 8 на первом канале. С выхода второго генератора 13 через второй блок ИЛИ 20 сигналы поступают на второй вход смесителя, на первом входе которого поступают излучаемые антенной 7 первого корабля и отраженные от объекта колебания, принимаемые приемной акустической антенной 1. Далее схема работает аналогично решению-прототипу. Отличие состоит лишь в том, что сигналы на вход видеоусилителя с выхода многоканального анализатора спектра 5 поступают через первый блок И 14, вычислитель 9 и первый блок ИЛИ 19. Причем, поскольку излучающая антенна 7 не работает, то соответствующий сигнал на третий вход индикатора кругового обзора 4 поступает с выхода второго генератора 13 через третий блок ИЛИ 21. В вычислитель 9 с его первого входа вначале поступает сигнал, содержащий информацию о дальности до излучающей антенны 7 первого корабля (прямые колебания), а на его второй вход - сигнал, содержащий информацию о курсовом угле указанной антенны. Затем соответственно на первый и второй входы вычислителя 9 поступают сигналы, содержащие информацию о длине пути, который прошли колебания, излучаемые антенной 7 первого корабля при их отражении от объекта (величина d в соотношении (1)), и курсовой угол на объект.
На выходе вычислителя 9 формируется сигнал, содержащий информацию о дальности до объекта в соответствии с соотношением (1).
При этом скорость хода первого корабля, осуществляющего, в частности, преследование уклоняющегося объекта, уже не влияет на качество и возможность приема акустических колебаний приемной антенной 1 второго корабля, который может при этом двигаться малошумными ходами. Очевидно также, что корабли могут периодически менять режим работы своих ГАС, а именно второй корабль может работать в режиме излучения своей ГАС и преследовать объект, а первый корабль - стопорить ход и работать в режиме только приема акустических колебаний, излучаемых ГАС второго корабля. При этом возможность получения информации о координатах объекта поиска кораблем, чья ГАС работает только на прием, обеспечивается в том числе и на близких расстояниях от корабля, ибо реверберация в момент приема уже отсутствует. Эта возможность отсутствует только в одном случае, когда объект находится на одной линии с обоими кораблями между ними. (В этом случае прямой и отраженный сигнал проходит на приемную антенну 1 одновременно и с одного направления, и нет возможности их различить).
Таким образом, на основе анализа структуры и функционирования схемы предложенного технического решения можно заключить, что корабельная гидролокационная станция, в которой реализовано данное решение, обладает преимуществами, отвечающими поставленной цели - сокращение размеров "мертвой" зоны корабельной ГАС, а также увеличение вероятности определения координат подводных объектов, в том числе возможности сохранения гидроакустического контакта с ними при увеличении скорости хода корабля-носителя ГАС, преследующего уклоняющийся от обнаружения объект.
Claims (1)
- Корабельная гидролокационная станция, содержащая излучающую акустическую антенну, генератор с частотной модуляцией сигналов, последовательно соединенные приемную акустическую антенну, смеситель, блок усилителей и многоканальный анализатор спектра и последовательно соединенные видеоусилитель и индикатор кругового обзора, второй вход которого соединен с вторым выходом приемной антенны, отличающаяся тем, что в нее дополнительно введены второй генератор, приемник, передатчик, переключатель режимов, вычислитель, три блока ИЛИ, блок НЕ и четыре блока И, причем первый выход переключателя режимов соединен с входом видеоусилителя через первый блок И, вычислитель и первый блок ИЛИ, второй вход которого соединен с выходом анализатора спектра через второй блок И, второй вход второго блока И соединен с первым выходом переключателя режимов через блок НЕ, второй вход смесителя соединен с первым выходом переключателя режимов через приемник, второй генератор и второй блок ИЛИ, второй вход которого соединен с выходом первого генератора через третий блок И, второй вход третьего блока И соединен с выходом блока НЕ, второй выход переключателя режимов соединен с входом передатчика через четвертый блок И, второй вход которого соединен с выходом третьего блока И, третий вход индикатора кругового обзора соединен с выходом второго генератора через третий блок ИЛИ, второй вход которого соединен с выходом излучающей акустической антенны, второй вход первого блока И соединен с выходом анализатора спектра, вход излучающей акустической антенны соединен с выходом третьего блока И, второй вход вычислителя соединен с вторым выходом приемной акустической антенны.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2173865C1 true RU2173865C1 (ru) | 2001-09-20 |
Family
ID=
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520436A (zh) * | 2011-11-15 | 2012-06-27 | 中国船舶重工集团公司第七一○研究所 | 一种载体共振接收式水中目标检测装置 |
RU2502085C1 (ru) * | 2012-04-06 | 2013-12-20 | Открытое акционерное общество "Концерн "Океанприбор" | Гидроакустическая станция для надводного корабля |
Non-Patent Citations (1)
Title |
---|
ЕВТЮХОВ А.П. и др. Справочник по гидроакустике. - Л. Судостроение, 1988, с.22. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102520436A (zh) * | 2011-11-15 | 2012-06-27 | 中国船舶重工集团公司第七一○研究所 | 一种载体共振接收式水中目标检测装置 |
CN102520436B (zh) * | 2011-11-15 | 2013-09-18 | 中国船舶重工集团公司第七一○研究所 | 一种载体共振接收式水中目标检测装置 |
RU2502085C1 (ru) * | 2012-04-06 | 2013-12-20 | Открытое акционерное общество "Концерн "Океанприбор" | Гидроакустическая станция для надводного корабля |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7106656B2 (en) | Sonar system and process | |
RU2528556C1 (ru) | Способ обработки эхосигнала гидролокатора | |
RU2456634C1 (ru) | Способ навигации подводного объекта посредством гидроакустической навигационной системы | |
US20200096632A1 (en) | Optimised acoustic detection system for detecting various underwater threats in a sensitive zone | |
US7362655B1 (en) | Time-synchronous acoustic signal ranging system and method | |
RU2271551C2 (ru) | Способ обнаружения подводных объектов и устройство для его осуществления | |
US6052335A (en) | Multiple-frequency sonar system | |
RU2740158C1 (ru) | Способ гидролокационного обнаружения высокоскоростного малоразмерного объекта | |
RU2546852C1 (ru) | Гидроакустический способ измерения дистанции с использованием взрывного сигнала | |
RU2173865C1 (ru) | Корабельная гидролокационная станция | |
RU2444756C1 (ru) | Способ обнаружения и локализации воздушных объектов | |
Yongtan | Target detection and tracking with a high frequency ground wave over-the-horizon radar | |
RU75060U1 (ru) | Акустическая локационная система ближнего действия | |
US20060083110A1 (en) | Ambient bistatic echo ranging system and method | |
US3914729A (en) | Underwater acoustic surveillance of harbor and channel areas | |
JP2000088942A (ja) | バイスタティックソーナーの左右判別方法 | |
US4954999A (en) | Double phase-lock-loop sonar | |
RU20394U1 (ru) | Гидроакустическая станция для надводных кораблей поиска и сопровождения торпед | |
RU2726934C1 (ru) | Способ синхронизации корабельных гидроакустических станций | |
RU78953U1 (ru) | Гидроакустическая станция с гибкой протяженной буксируемой антенной для гидроакустического комплекса подводной лодки | |
RU2791163C1 (ru) | Способ обнаружения зондирующих сигналов | |
RU2256190C2 (ru) | Подвижная наземная двухкоординатная рлс кругового обзора метрового диапазона волн | |
Shifu et al. | Multi-base Remote Target Detection Simulation System Based on Active Sound Source | |
CN221631686U (zh) | 一种小型化宽频被动声纳 | |
US20240201369A1 (en) | Method of pre-processing acoustic signals received from an ensonified region of an underwater environment |