RU2171951C1 - Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой - Google Patents
Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой Download PDFInfo
- Publication number
- RU2171951C1 RU2171951C1 RU99124609/06A RU99124609A RU2171951C1 RU 2171951 C1 RU2171951 C1 RU 2171951C1 RU 99124609/06 A RU99124609/06 A RU 99124609/06A RU 99124609 A RU99124609 A RU 99124609A RU 2171951 C1 RU2171951 C1 RU 2171951C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- condensate
- liquid
- fraction
- wells
- Prior art date
Links
Landscapes
- Pipeline Systems (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к области добычи жидких и газообразных текучих сред из буровых скважин, а именно к способам добычи углеводородов с последующим разделением извлеченных из скважин материалов, и может найти применение при промысловой подготовке и транспортировке углеводородного сырья в процессе освоения газоконденсатных и газоконденсатно-нефтяных месторождений. Техническим результатом изобретения является обеспечение вовлечения широкой фракции летучих углеводородов (C2+C3+C4) в товарную продукцию и доставка их потребителю. Это достигается следующим образом. Извлеченную из куста скважин и собранную на кустовом пункте пластовую ГЖС очищают от твердых, жидких и газообразных примесей и разделяют на две фазы: жидкую (фракция C5 и выше или стабильный конденсат) и газовую (метан-бутановая фракция C1+C2+C3+C4). Жидкую фазу подвергают разгазированию и закачивают в магистральный газопровод. Газовую фазу дополнительно очищают от твердых и жидких взвешенных частиц, стабилизируют и эжектируют в магистральный газопровод. При поступлении потребителю метан-бутановую смесь при необходимости разделяют на фракции и компоненты.
Description
Изобретение относится к области добычи жидких и газообразных текучих сред из буровых скважин, а именно к способам добычи углеводородов с последующим разделением извлеченных из скважин материалов, и может найти применение при промысловой подготовке и транспортировке углеводородного сырья в процессе освоения газоконденсатных и газоконденсатно-нефтяных месторождений.
Общеизвестно, что извлекаемая из продуктивных пластов газоконденсатно-нефтяного месторождения газожидкостная смесь (далее - ГЖС) состоит из широкого спектра газообразных и жидких углеводородов и твердых, жидких и газообразных примесей. Чтобы из этой смеси выделить товарную продукцию и доставить ее потребителю, пластовую ГЖС подвергают промысловой обработке (подготовке), т. е. очищают от твердых, жидких и газообразных примесей, разделяют на фазы и фракции, затем полученное углеводородное сырье известными способами транспортируют потребителю. Выбор способа промысловой подготовки газа и конденсата к транспорту и вида транспорта определяется целым рядом факторов, основными из которых являются геологические, географические и климатические условия месторождения, вещественный состав углеводородного сырья, наличие твердых, жидких и газообразных примесей. При этом должен быть достигнут максимальный выход товарного продукта и обеспечены высокое качество и низкая себестоимость углеводородного сырья, а следовательно, и его конкурентоспособность на внутреннем и внешнем рынках.
В специальной литературе достаточно широко освещены вопросы разработки газоконденсатных и газоконденсатно-нефтяных месторождений (далее - ГКН месторождения), добычи и обработки углеводородного сырья, транспорта его потребителю (1, 2). Извлеченную и собранную из группы скважин пластовую ГЖС очищают от твердых частиц, воды и других примесей. Затем метан-этановую смесь (фракция C1 + C2) отделяют от конденсата, дополнительно очищают от твердых и жидких взвешенных частиц, просушивают и направляют в магистральный газопровод. Конденсат (фракция C3 и выше) сначала отстаивают в водоотделителях, потом пропускают через специальные сепараторы (для поддержания необходимого давления) и закачивают в конденсатопровод, по которому конденсат под собственным давлением транспортируется потребителю. В случае отсутствия на промысле конденсатопровода конденсат доставляют потребителю наземным (железнодорожным, автомобильным) или водным транспортом. С этой целью конденсат разделяют на жидкую фазу (фракция C5 и выше, т.е. стабильный конденсат) и газовую фазу (пропан-бутановая фракция C3+C4, т.е. нестабильный конденсат). Стабильный конденсат закачивают в нефтепровод, а нестабильный конденсат через конденсаторы направляют в накопительные емкости, из которых производится налив цистерн наземного или водного транспорта для доставки его потребителю.
Изложенный способ обработки и транспортировки углеводородного сырья ГКН месторождения имеет существенный недостаток - обязательным условием его реализации является наличие на промысле конденсатопровода, либо в газодобывающем регионе должна быть в достаточной степени развита транспортная инфраструктура. Однако далеко не везде эти условия имеют место. Достаточно сказать, что в РФ разведано свыше 300 ГКН месторождений, расположенных в регионах, неблагоприятных с точки зрения транспорта углеводородного сырья в промышленные центры. К примеру, группа Васюганских ГКН месторождений Томской области (Мыльджинское, Северо-Васюганское и др.) не имеют конденсатопровода, связывающего эти месторождения с потребителями - Томским нефтехимическим комбинатом и ТЭЦ-3. Строительство конденсатопровода Мыльджино- Томск протяженностью 530-600 км обошлось бы ОАО "Томскгазпром" порядка 400-500 млн. долл. США, что в современных экономических условиях нереально. Нет возможности для доставки конденсата в г. Томск наземным транспортом. Это объясняется тем, что северные районы области сильно заболочены, ввиду чего в газодобывающем регионе дороги практически полностью отсутствуют. Транспорт конденсата водным путем также исключен, так как имеющиеся в районе месторождения небольшие реки судоходны лишь 1-1,5 месяца в году.
В этой связи "ТомскНИПИНефть" разработал проект освоения Мыльджинского ГКН месторождения, сущность которого сводится к следующему (3). Этот проект и принят нами за прототип. Извлеченную из кустов скважин и собранную на кустовых пунктах сбора пластовую ГЖС обрабатывают на установках комплексной подготовки газа (УКПГ) и установках дифференциальной сепарации компонентов смеси (УДСК). На этих установках по известным технологиям пластовую ГЖС очищают от твердых частиц, воды и других примесей и разделяют на фазы и фракции: жидкую фазу (фракция C5 и выше или стабильный конденсат), газ метан (C1) и фракцию C2 + C3 + C4 или широкую фракцию летучих углеводородов (далее - ШФЛУ). После соответствующей обработки стабильный конденсат (фракция C5 и выше) закачивают в нефтепровод, а осушенный газ (C1) подают в магистральный газопровод, а ШФЛУ - ввиду отсутствия на промысле конденсатопровода и возможности доставки потребителю наземным или водным транспортом - закачивают в продуктивные пласты месторождения.
Очевидно, что существенным недостатком технологии, разработанной "ТомскНИПИНефть", является нерациональное использование ШФЛУ (фракция C2 + C3 + C4) - высококалорийного топлива и ценного сырья для химической промышленности. Во-первых, ОАО "Томскгазпром" несет огромные убытки от того, что около 300 тыс. т в год ценных углеводородов изымается из товарной продукции. Во-вторых, закачка ШФЛУ в продуктивные пласты месторождения связана с значительными энергозатратами. В-третьих, в случае выпадения нестабильного конденсата в призабойной зоне скважин в жидкую фазу резко снижается дебит добывающих скважин, и более того - эти скважины могут полностью прекратить выдачу газоконденсата.
Поставлена задача: в условиях отсутствия на ГКН месторождении конденсатопровода, наземных дорог и водных путей обеспечить вовлечение широкой фракции летучих углеводородов (фракция C2 + C3 + C4) в товарную продукцию и доставку их потребителю.
Эта задача решена следующим образом. Извлеченную из куста скважин и собранную на кустовом пункте сбора пластовую ГЖС очищают от твердых частиц, воды и других примесей и разделяют на две фазы - жидкую и газообразную. Жидкую фазу (фракция C5 и выше) подвергают разгазированию и закачивают в нефтепровод. Газовую фазу (метан-бутановая фракция C1 + C2 + C3 + C4) дополнительно очищают от твердых и жидких взвешенных частиц, стабилизируют и эжектируют в действующий магистральный газопровод. При поступлении потребителю газовую смесь при необходимости разделяют на фракции и компоненты.
Порядок реализации предложенного технического решения показан на следующем примере. ГКН месторождение разбуривается кустами эксплуатационных скважин. Каждый из кустов состоит из 6 периферийных добывающих скважин, вскрывающих продуктивный пласт в углах шестиугольника, и одной центральной нагнетательной скважины. В процессе освоения месторождения из добывающих скважин отбирается пластовая ГЖС, которая по шлейфам поступает на кустовой сборный пункт. Собранная на кусте пластовая ГЖС обрабатывается на установке комплексной подготовки газа (УКПГ), где она очищается от твердых, жидких и газообразных примесей и разделяется на две фазы: жидкую (фракция C5 и выше или стабильный конденсат) и газовую (метан-бутановая фракция (C1 + C2 + C3 + C4)). Жидкую фазу стабилизируют путем разгазирования и закачивают в нефтепровод. Газовую фазу дополнительно очищают от твердых и жидких взвешенных частиц и осушивают с точкой росы паров воды ниже минимальной рабочей температуры. Стабилизированная таким образом газовая смесь посредством эжектирования нагнетается в магистральный газопровод, по которому вместе с сухим газом смесь транспортируется потребителю. В качестве устройств для эжектирования газовой смеси в газопровод используются эжекторы типа "ГАЗ-ГАЗ". Поступившая потребителю газовая смесь может использоваться как химическое сырье. В этом случае газовая смесь посредством низкотемпературной сепарации или абсорбционным способом разделяют на метан (C1) и ШФЛУ (фракция C2 + C3 + C4) или на фракции - метан-этановую (C1 + C2) и пропан-бутановую (C3 + C4). Если газовая смесь предназначена для сжигания на тепловых и электрических станциях, то она на фракции не разделяется.
По сравнению с прототипом предложенное техническое решение обладает следующими преимуществами:
все без исключения добываемые из ГКН месторождения углеводороды представляют собой товарную продукцию, доставляемую по трубопроводу;
исключаются энергетические затраты, связанные с закачкой ШФЛУ в продуктивный пласт месторождения;
повышается надежность и стабильность работы добывающих скважин;
отпадает необходимость строительства конденсатопровода, что значительно снижает финансовые, материальные, трудовые и временные затраты на освоение ГКН месторождения.
все без исключения добываемые из ГКН месторождения углеводороды представляют собой товарную продукцию, доставляемую по трубопроводу;
исключаются энергетические затраты, связанные с закачкой ШФЛУ в продуктивный пласт месторождения;
повышается надежность и стабильность работы добывающих скважин;
отпадает необходимость строительства конденсатопровода, что значительно снижает финансовые, материальные, трудовые и временные затраты на освоение ГКН месторождения.
Источники информации
1. Н. М. Базлов и др. Подготовка природного газа и конденсата к транспорту. М, "Недра", 1968, с. 140.
1. Н. М. Базлов и др. Подготовка природного газа и конденсата к транспорту. М, "Недра", 1968, с. 140.
2. Н. Г. Середа и др. Спутники нефтяника и газовика. Справочник. М., "Недра", 1986, с. 288.
3. Проект опытно-промышленной эксплуатации Мыльджинского газоконденсатно-нефтяного месторождения. Томск, "ТомскНИПИНефть", 1996, с. 363.
Claims (1)
- Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой, заключающийся в том, что извлеченную из скважин и собранную на групповом пункте сбора пластовую газожидкостную смесь очищают от твердых, жидких и газообразных примесей и разделяют на жидкую фазу (фракция C5 и выше) и газовую фазу (метан-бутановая смесь C1+C2+C3+C4), причем жидкую фазу разгазируют и закачивают в нефтепровод, отличающийся тем, что метан-бутановую фракцию стабилизируют, дополнительно осушая с температурой точки росы паров воды ниже минимальной рабочей температуры, подают посредством эжектирования в газопровод и транспортируют потребителю, где при необходимости ее разделяют известными методами на фракции и компоненты.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99124609/06A RU2171951C1 (ru) | 1999-11-23 | 1999-11-23 | Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99124609/06A RU2171951C1 (ru) | 1999-11-23 | 1999-11-23 | Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2171951C1 true RU2171951C1 (ru) | 2001-08-10 |
Family
ID=35364454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99124609/06A RU2171951C1 (ru) | 1999-11-23 | 1999-11-23 | Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2171951C1 (ru) |
-
1999
- 1999-11-23 RU RU99124609/06A patent/RU2171951C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Проект опытно-промышленной эксплуатации Мыльджинского газоконденсатно-нефтяного месторождения. - Томск: ТОМСКНИПИНЕФТЬ, 1996, с.363. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7763166B2 (en) | Relocatable countercurrent decantation system | |
CN101652617A (zh) | 天然气处理系统 | |
US20100276983A1 (en) | Integration of an in-situ recovery operation with a mining operation | |
RU2618783C2 (ru) | Система сепарации мультифазного потока | |
US3137344A (en) | Minimizing loss of driving fluids in secondary recovery | |
US5461184A (en) | Method for diamondoid extraction using a solvent system | |
US20100258308A1 (en) | Water Integration Between An In-Situ Recovery Operation And A Bitumen Mining Operation | |
Almukhametova et al. | Efficiency of preliminary discharge of stratum water in Tuymazinskoe oil field | |
Schraufnagel | Coalbed Methane Production: Chapter 15 | |
US3670752A (en) | Pipelining crude oils and tars containing dissolved natural gas at sub-freezing temperatures in order to avoid environmental damage | |
EP2686517B1 (en) | Systems and methods for separating oil and/or gas mixtures | |
US2728406A (en) | Low temperature separation processes and units | |
CA2658996A1 (en) | Leach recovery of oil from oil sands and like host materials | |
RU2171951C1 (ru) | Способ повышения эффективности освоения газоконденсатно-нефтяного месторождения в регионе с неразвитой транспортной инфраструктурой | |
RU2171953C1 (ru) | Способ повышения эффективности освоения газоконденсатнонефтяного месторождения в регионе с неразвитой транспортной инфраструктурой | |
RU2171952C1 (ru) | Способ повышения эффективности освоения газоконденсатнонефтяного месторождения в регионе с неразвитой транспортной инфраструктурой | |
US3103972A (en) | Miscible-fluid flooding technique | |
CA2550623C (en) | Relocatable countercurrent decantation system | |
FR2514071A1 (fr) | Procede de production de gisements d'hydrocarbure avec reinjection d'effluents dans le gisement ou dans le ou les puits et installation pour la mise en oeuvre dudit procede | |
US2238701A (en) | Method of recovering oil from oil and gas bearing sands | |
US2174336A (en) | Method of recovering well fluids and conserving reservoir pressure | |
US4533366A (en) | Evaporation dehydrator | |
Madian et al. | Treating of produced water for surface discharge at the Arun gas condensate field | |
Kovaleva et al. | Reasons for formation of stable intermediate layer water-in-oil emulsions in tanks | |
RU2763097C1 (ru) | Способ предварительного сброса попутно-добываемой воды и трубный делитель фаз для его осуществления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20031124 |