RU2158840C2 - Корпус камеры жидкостного ракетного двигателя - Google Patents

Корпус камеры жидкостного ракетного двигателя Download PDF

Info

Publication number
RU2158840C2
RU2158840C2 RU99100830/06A RU99100830A RU2158840C2 RU 2158840 C2 RU2158840 C2 RU 2158840C2 RU 99100830/06 A RU99100830/06 A RU 99100830/06A RU 99100830 A RU99100830 A RU 99100830A RU 2158840 C2 RU2158840 C2 RU 2158840C2
Authority
RU
Russia
Prior art keywords
nozzle
coating
fire wall
nickel
wall
Prior art date
Application number
RU99100830/06A
Other languages
English (en)
Inventor
А.А. Васин
В.В. Федоров
Г.А. Бабаева
Original Assignee
Открытое акционерное общество "НПО Энергомаш им. акад. В.П. Глушко"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20214712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2158840(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Открытое акционерное общество "НПО Энергомаш им. акад. В.П. Глушко" filed Critical Открытое акционерное общество "НПО Энергомаш им. акад. В.П. Глушко"
Priority to RU99100830/06A priority Critical patent/RU2158840C2/ru
Priority to US09/392,590 priority patent/US6442931B1/en
Priority to DE69924462T priority patent/DE69924462T2/de
Priority to EP99124967A priority patent/EP1022456B1/en
Application granted granted Critical
Publication of RU2158840C2 publication Critical patent/RU2158840C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/974Nozzle- linings; Ablative coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Корпус предназначен для камеры сгорания жидкостного ракетного двигателя. Корпус содержит камеру сгорания, сопло, состоящее из дозвуковой и сверхзвуковой частей, имеющих внешнюю силовую оболочку и огневую стенку с оребренной наружной поверхностью. Между оболочкой и стенкой образован тракт регенеративного охлаждения. Указанная стенка выполнена из меди или медного сплава. Указанная силовая оболочка выполнена из стали или никелевого сплава. Огневая стенка имеет металлическое покрытие, выполненное слоистым в районе критического сечения сопла, на продольной его длине, равной не менее 0,3 диаметра критического сечения сопла. Первый слой покрытия представляет собой никелевое покрытие толщиной от 50 до 1000 мкм, а второй слой - хромовое покрытие толщиной от 10 до 500 мкм. Такое выполнение корпуса позволит повысить термостойкость огневой стенки камеры сгорания двигателя, в частности для компонентов ракетного топлива кислород-керосин. 2 з.п.ф-лы, 6 ил.

Description

Изобретение относится к ракетному двигателестроению, преимущественно к конструкциям камеры жидкостного ракетного двигателя, и может быть использовано в авиадвигателестроении, а его отдельные элементы - в теплотехнике.
Предшествующий уровень техники
Известно сопло для твердотопливного ракетного двигателя, в котором оно выполнено слоистым (Патент США N 3648461).
Внутренний слой со стороны огневой полости в этом техническом решении выполнен изоляционным из абляционного или неабляционного материала. Ограничением технического решения является то, что его сложно эффективно использовать на регенеративно охлаждаемых камерах для жидкостных ракетных двигателей (ЖРД).
Из техники известно применение покрытий в оболочках камер ЖРД. Известны камеры сгорания ЖРД, в которых "снижение тепловых потоков достигается нанесением на стенки керамических теплоизоляционных покрытий" (Энциклопедия "Космонавтика", главный редактор В.П. Глушко, М., 1985, стр. 153).
В этом техническом решении не приводятся материалы покрытий для конкретных камер, поэтому не ясно, каким образом обеспечить эффективное повышение ресурса работы конкретных камер на компонентах топлива кислород-керосин. Однако приводятся данные о камере ЖРД с жаропрочной молибденовой вставкой, покрытой защитным покрытием из двуокиси циркония.
Наиболее близким для заявленного технического решения является корпус камеры жидкостного ракетного двигателя, содержащий камеру сгорания, сопло, состоящее из дозвуковой и сверхзвуковой частей, имеющих внешнюю силовую оболочку и внутреннюю огневую стенку с оребренной наружной поверхностью, причем между силовой оболочкой и огневой стенкой сформирован тракт регенеративного охлаждения, огневая стенка выполнена из меди или медного сплава, а внешняя силовая оболочка выполнена из стали или никелевого сплава ("Конструкция и проектирование жидкостных ракетных двигателей", Г.Г. Гахун, В.И. Баулин, В.А. Володин и др., М., 1989 г., стр. 101-111, рис. 6.1).
В известном техническом решении на внутренней поверхности стальной наружной оболочки камеры выполняется покрытие. Покрываются также гальваническим способом ребра бронзовой внутренней оболочки камеры.
Однако в ряде случаев известное техническое решение не обеспечивает необходимого повышения ресурса работы камеры ЖРД, а требует дополнительных мероприятий, направленных на повышение термостойкости стенок камеры.
Раскрытие изобретения
Задача, на решение которой направлено патентуемое изобретение, - повышение ресурса работы корпуса, а во многих случаях - и камеры, и всего ЖРД в целом. Задача заключается также в создании корпуса камеры кислородно-керосинового ЖРД большой тяги на повышенный ресурс работы.
Технический результат, достигаемый настоящим изобретением, состоит в повышении термостойкости огневой стенки камеры ЖРД, в частности для компонентов ракетного топлива кислород-керосин. Введение указанного покрытия в районе критического сечения сопла способствует увеличению термостойкости стенки в этом теплонапряженном месте.
Сущность изобретения заключается в следующем.
В известном корпусе камеры ЖРД, содержащем камеру сгорания, сопло, состоящее из дозвуковой и сверхзвуковой частей, выполненных из внешней силовой оболочки и огневой стенки с оребренной наружной поверхностью, расположенной внутри силовой оболочки, тракт регенеративного охлаждения, сформированный между внешней силовой оболочкой и огневой стенкой, внешняя силовая оболочка выполнена из стали или никелевого сплава, а огневая стенка - из меди или медного сплава, и ее внутренняя поверхность снабжена металлическим покрытием, выполненным из двух слоев в теплонапряженном месте между дозвуковой и сверхзвуковой частями в области критического сечения сопла. Продольная вдоль корпуса протяженность покрытия не менее 0,3 диаметров критического сечения. При этом первый слой покрытия на внутренней огневой стенке - это никелевое покрытие толщиной от 50 мкм до 1000 мкм, а второй слой - хромовое покрытие толщиной от 10 мкм до 500 мкм. Величина толщины покрытия на каждом конкретном разработанном двигателе зависит от его ресурса работы и особенностей течения и состава продуктов сгорания в камере.
Внутренняя огневая стенка корпуса может быть покрыта также на протяжении всей своей длины указанным выше слоистым покрытием, первый слой - никель, а второй слой - хром.
Одновременно обеспечивается возможность работы заявленного корпуса на других химически активных компонентах топлива ЖРД, таких как водород, фтор, азотная кислота, несимметричный диметилгидрозин и других продуктах, широко распространенных в ракетной технике.
В качестве частного случая возможно наличие покрытия в камере сгорания со стороны огневой полости из никеля толщиной от 50 мкм до 1000 мкм, при этом сохраняется слоистое покрытие на остальной части медной или из медного сплава стенки корпуса, по крайней мере, в районе критического сечения сопла на продольной длине не менее 0,3 диаметра критического сечения сопла, причем первый слой представляет собой никелевое покрытие толщиной от 50 мкм до 1000 мкм, а второй слой - хромовое покрытие толщиной от 10 мкм до 500 мкм.
Этот частный случай корпуса камеры ЖРД более дешев и прост в изготовлении, чем рассматриваемый корпус, когда вся огневая стенка камеры сгорания покрыта указанным выше слоистым покрытием из никеля, а затем хрома.
В качестве другого частного случая корпус камеры в сверхзвуковой части сопла со стороны выхода может быть изготовлен не только в виде внешней силовой оболочки и внутренней огневой стенки с оребренной наружной поверхностью так, что внешняя силовая оболочка выполнена из стали или никелевого сплава, а внутренняя огневая стенка - из меди или медного сплава и покрыта слоистым металлическим покрытием. Эта часть внутренней огневой стенки в частном случае может быть выполнена также из стали или никелевого сплава без нанесения покрытия на нее со стороны огневой полости. Сверхзвуковая часть сопла корпуса камеры со стороны выхода может быть выполнена и в виде термостойкой металлической оболочки, являющейся одновременно огневой стенкой. Она может быть выполнена также из термостойкого неметаллического материала. В обоих случаях нет необходимости в нанесении покрытий на выходной части сверхзвукового сопла со стороны огневой полости.
Дополнительный технический результат последнего частного случая в снижении металлоемкости конструкции корпуса камеры и перспективном удешевлении и снижении массы.
Указанные преимущества, а также особенности настоящего изобретения поясняются лучшими вариантами его выполнения со ссылками на прилагаемые чертежи.
Краткий перечень чертежей
Фиг. 1 изображает корпус камеры со слоистым покрытием в районе критического сечения сопла.
На фиг. 2 представлено место I на фиг. 1, 3-5 в увеличенном масштабе по отношению к изображениям корпуса на указанных фигурах.
Фиг. 3 изображает корпус камеры со слоистым покрытием на огневой стенке сопла.
Фиг. 4 - корпус камеры со слоистым покрытием на огневой стенке всего корпуса.
Фиг. 5 - корпус камеры с никелевым покрытием на огневой стенке камеры сгорания и со слоистым покрытием на огневой стенке основной части сопла.
На фиг.6 представлено место II на фиг.5 в увеличенном масштабе по отношению к другим изображениям корпуса на указанных фигурах.
Лучшие варианты выполнения изобретения
Как показано на фиг. 1, корпус камеры состоит из камеры сгорания 1 (на длине L1) и сопла 2 (на длине L2). Сопло 2 состоит из дозвуковой части 3 (на длине L3) и сверхзвуковой части 4 (на длине L4) (А-А - критическое сечение сопла, d - диаметр критического сечения). Сверхзвуковая часть сопла 4 состоит из участка 5 со стороны входа (на длине L5) и участка 6 со стороны выхода (на длине L6).
Все перечисленные части корпуса образуют внешнюю силовую оболочку и внутреннюю огневую стенку камеры, между которыми расположен тракт регенеративного охлаждения. Внешняя силовая оболочка выполнена из стали или никелевого сплава, а внутренняя огневая стенка - из меди или медного сплава.
В районе критического сечения сопла А-А на участке 7 (на длине L7) на продольной длине не менее 0,3 диаметров критического сечения сопла d внутренняя огневая стенка со стороны огневой полости снабжена слоистым покрытием, данные о котором приведены при описании фиг. 2. Меньшая протяженность покрытий не эффективна ввиду того, что такому техническому решению могут сопутствовать прогары на непокрытой огневой стенке при повышенных ресурсах работы.
На фиг.2 в увеличенном масштабе представлена область I (фиг. 1), где 8 - внешняя силовая оболочка, 9 - внутренняя огневая стенка, 10 - тракт регенеративного охлаждения. Слоистое покрытие нанесено на медь или медный сплав внутренней огневой стенки 9 со стороны огневой полости камеры. Первый слой этого покрытия 11 - никель толщиной от 50 мкм до 1000 мкм, а второй слой 12 - хромовое покрытие толщиной от 10 мкм до 500 мкм.
На фиг.3 представлена конструкция корпуса камеры ЖРД со слоистым покрытием на поверхностях со стороны огневой стенки сопла. Конструкция корпуса здесь совершенно аналогичная, как на фиг. 1. Однако здесь слоистое покрытие нанесено со стороны огневой полости на дозвуковую часть сопла 3 и участок 5 со стороны входа в сверхзвуковую часть сопла. Покрытие по своим данным аналогично описанному выше для фиг. 1 и отличается тем, что оно нанесено на указанный выше участок (т.е. определяемый осевыми размерами L3 и L5, если судить по фиг. 1, 3). Особенности покрытия аналогичны изображенным на фиг. 2 и описаны выше.
На фиг.4 представлена конструкция корпуса камеры ЖРД со слоистым покрытием на огневой стенке корпуса, т.е. камеры сгорания 1 и сопла 2 (т.е. покрытие нанесено на поверхности, определяемые осевыми размерами L1 и L2, если судить по фиг. 1, 4). Конструкция корпуса здесь аналогична изображенной на фиг. 1. Особенности покрытия аналогичны изображенным на фиг. 2 и описаны выше.
В корпусах на фиг. 1, 3, 4 внешняя силовая оболочка выполнена из стали или никелевого сплава, а внутренняя огневая стенка из меди или медного сплава (например, бронзы). Особенности наносимого слоистого покрытия отражены на фиг. 2 и даны выше в описании этой фигуры.
На фиг. 5 представлен корпус камеры, в котором, в отличие от изображенных на фиг. 1, 3, 4 за исключением покрытия, особенностью обладает участок сверхзвуковой части сопла со стороны выхода 13 (на длине L6, если смотреть на фиг. 1, 5). Особенность его в том, что его внутренняя огневая стенка выполнена из стали или никелевого сплава. Этот участок покрытия не имеет. Покрытие сопла в нем на дозвуковой части 3, на участке сверхзвуковой части сопла со стороны входа 5 (т.е. на длинах L3 и L5, если смотреть на фиг. 1, 5) выполнено аналогично покрытию, изображенному на фиг. 2 и представленному в описании к нему.
В камере сгорания 1 со стороны огневой полости (т.е. на длине L1) выполнено покрытие никелем толщиной от 50 мкм до 1000 мкм на огневой стенке. Область нанесения покрытия II (см. фиг.5) в увеличенном масштабе представлена на фиг.6.
На фиг.6. внешняя силовая оболочка 8 охватывает внутреннюю огневую стенку 9, на которой выполнены ребра и пазы (на чертежах не приведены), образующие тракт регенеративного охлаждения 10. На внутренней огневой стенке 9 выполнено описанное в предыдущем абзаце никелевое покрытие 11.
Следует отметить, что сверхзвуковая часть сопла со стороны выхода может быть выполнена в виде термостойкой металлической оболочки, одновременно являющейся огневой стенкой. Материалом этой части оболочки может быть, например, молибден или термостойкий неметаллический материал. В такой части корпуса камеры покрытия не требуется.
Указанные в тексте величины покрытий (для фиг. 2 и 6) содержат оптимальные значения. Меньшие значения этих толщин снижают эффективность покрытий, а большие значения технологически сложно осуществить, и в ряде случаев они экономически нецелесообразны.
Кроме приведенных на фиг. 2 и 6 покрытий в отдельных случаях возможно нанесение других дополнительных покрытий, например, в виде слоев, с целью предотвращения механических повреждений основного покрытия и огневой стенки корпуса. Но такое покрытие принципиального значения не имеет.
Следует отметить, что камера сгорания не обязательно должна быть цилиндрической. Она может иметь и коническую, и грушевидную, и какую-либо иную форму.
Тракт регенеративного охлаждения может быть выполнен различным образом и иметь различное расположение своих входных и выходных участков. Камера может содержать щелевые элементы (пояса завес) внутреннего охлаждения, сообщающиеся с гидравлическим трактом.
В сечениях конструкции и размеры трактов охлаждения, внешних силовых оболочек и внутренних огневых стенок в общем случае неодинаковы по длине корпуса. А в настоящих материалах места I и II выполнены одинаковыми для многих сечений условно, как частный случай.
Промышленная применимость
Наиболее успешно заявленный корпус камеры жидкостного ракетного двигателя может быть использован в ракетной технике, преимущественно на камерах кислород-керосиновых ЖРД больших величин тяг.

Claims (3)

1. Корпус камеры жидкостного ракетного двигателя, содержащий камеру сгорания, сопло, состоящее из дозвуковой и сверхзвуковой частей, выполненные из внешней силовой оболочки и огневой стенки, расположенной внутри силовой оболочки и выполненной из меди или медного сплава, тракт регенеративного охлаждения, сформированный между внешней силовой оболочкой и огневой стенкой, отличающийся тем, что огневая стенка с внутренней поверхности снабжена металлическим покрытием, выполненным из двух слоев и расположенным между дозвуковой и сверхзвуковой частями сопла в области его критического сечения по меньшей мере на продольной длине сопла, равной не менее 0,3 диаметра критического сечения сопла, при этом первый слой указанного покрытия на огневой стенке выполнен толщиной от 50 до 1000 мкм из никеля, а второй слой выполнен толщиной от 10 до 500 мкм из хрома и расположен на слое из никеля.
2. Корпус по п.1, отличающийся тем, что камера сгорания снабжена внутренним покрытием толщиной от 50 до 1000 мкм из никеля.
3. Корпус по п.1, отличающийся тем, что внешняя силовая оболочка выполнена из стали или никелевого сплава.
RU99100830/06A 1999-01-21 1999-01-21 Корпус камеры жидкостного ракетного двигателя RU2158840C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU99100830/06A RU2158840C2 (ru) 1999-01-21 1999-01-21 Корпус камеры жидкостного ракетного двигателя
US09/392,590 US6442931B1 (en) 1999-01-21 1999-09-09 Combustion chamber casing of a liquid-fuel rocket engine
DE69924462T DE69924462T2 (de) 1999-01-21 1999-12-15 Beschichtung für eine Brennkammer einer Flüssigtreibstoffrakete
EP99124967A EP1022456B1 (en) 1999-01-21 1999-12-15 Coating for a liquid-propellant rocket combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99100830/06A RU2158840C2 (ru) 1999-01-21 1999-01-21 Корпус камеры жидкостного ракетного двигателя

Publications (1)

Publication Number Publication Date
RU2158840C2 true RU2158840C2 (ru) 2000-11-10

Family

ID=20214712

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99100830/06A RU2158840C2 (ru) 1999-01-21 1999-01-21 Корпус камеры жидкостного ракетного двигателя

Country Status (4)

Country Link
US (1) US6442931B1 (ru)
EP (1) EP1022456B1 (ru)
DE (1) DE69924462T2 (ru)
RU (1) RU2158840C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113074387A (zh) * 2021-04-29 2021-07-06 北京航空航天大学 一种带有桁架结构的再生冷却通道
RU2768662C2 (ru) * 2017-12-02 2022-03-24 Аэроджет Рокетдайн, Инк. Медная камера сгорания с креплением к форсуночной головке через безмедное вварное переходное кольцо

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827584B2 (en) * 1999-12-28 2004-12-07 Formfactor, Inc. Interconnect for microelectronic structures with enhanced spring characteristics
US6640432B1 (en) * 2000-04-12 2003-11-04 Formfactor, Inc. Method of fabricating shaped springs
US6935594B1 (en) 2001-11-09 2005-08-30 Advanced Ceramics Research, Inc. Composite components with integral protective casings
RU2303155C2 (ru) * 2002-05-28 2007-07-20 Вольво Аэро Корпорейшн Конструкция стенки и элемент реактивного двигателя космического аппарата
US6688100B1 (en) * 2002-07-16 2004-02-10 The Boeing Company Combustion chamber having a multiple-piece liner and associated assembly method
US7306710B2 (en) * 2002-11-08 2007-12-11 Pratt & Whitney Rocketdyne, Inc. Apparatus and method for electroplating a metallic film on a rocket engine combustion chamber component
US6802179B2 (en) 2002-12-02 2004-10-12 Aerojet-General Corporation Nozzle with spiral internal cooling channels
US6799417B2 (en) * 2003-02-05 2004-10-05 Aerojet-General Corporation Diversion of combustion gas within a rocket engine to preheat fuel
US20070163228A1 (en) * 2006-01-19 2007-07-19 United Technologies Corporation Gas augmented rocket engine
DE102006021539A1 (de) * 2006-05-08 2007-11-15 Eads Space Transportation Gmbh Verfahren zur Herstellung von Bauteilen für den Raketenbau
US20080264372A1 (en) * 2007-03-19 2008-10-30 Sisk David B Two-stage ignition system
DE102007048527B4 (de) * 2007-10-10 2014-03-27 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Schubtriebwerk
KR100925541B1 (ko) * 2008-01-09 2009-11-05 한국항공우주연구원 니켈 및 크롬이 코팅된 액체로켓엔진용 재생냉각 연소실 및이의 코팅방법
DE102008061917B4 (de) * 2008-12-15 2010-11-04 Astrium Gmbh Heißgaskammer
FR2947871B1 (fr) * 2009-07-09 2011-11-25 Snecma Barriere anti-condensation sur circuit regeneratif
US8933275B2 (en) 2012-08-21 2015-01-13 Uop Llc Production of oxygenates from a methane conversion process
US9308513B2 (en) 2012-08-21 2016-04-12 Uop Llc Production of vinyl chloride from a methane conversion process
US8927769B2 (en) 2012-08-21 2015-01-06 Uop Llc Production of acrylic acid from a methane conversion process
US8937186B2 (en) 2012-08-21 2015-01-20 Uop Llc Acids removal and methane conversion process using a supersonic flow reactor
US9434663B2 (en) 2012-08-21 2016-09-06 Uop Llc Glycols removal and methane conversion process using a supersonic flow reactor
US9023255B2 (en) 2012-08-21 2015-05-05 Uop Llc Production of nitrogen compounds from a methane conversion process
US9689615B2 (en) 2012-08-21 2017-06-27 Uop Llc Steady state high temperature reactor
US9707530B2 (en) 2012-08-21 2017-07-18 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
US9327265B2 (en) 2012-08-21 2016-05-03 Uop Llc Production of aromatics from a methane conversion process
US9205398B2 (en) 2012-08-21 2015-12-08 Uop Llc Production of butanediol from a methane conversion process
US9370757B2 (en) 2012-08-21 2016-06-21 Uop Llc Pyrolytic reactor
US9656229B2 (en) 2012-08-21 2017-05-23 Uop Llc Methane conversion apparatus and process using a supersonic flow reactor
GB2549170B (en) * 2016-02-05 2021-01-06 Bayern Chemie Ges Fuer Flugchemische Antriebe Mbh Device and System for Controlling Missiles and Kill Vehicles Operated with Gel-like Fuels
DE102017129321A1 (de) * 2017-12-08 2019-06-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung, Fahrzeug
CN111636966B (zh) * 2020-05-28 2021-06-25 清华大学 发动机及其冷却系统
RU2746029C1 (ru) * 2020-08-26 2021-04-06 Акционерное общество "Конструкторское бюро химавтоматики" Камера жрд, работающего с дожиганием восстановительного генераторного газа
CN113982786B (zh) * 2021-10-29 2023-06-06 中国人民解放军战略支援部队航天工程大学 规避异种金属焊接的紫铜-不锈钢的火箭发动机推力室
CN114838385B (zh) * 2022-03-21 2023-09-19 西安航天动力研究所 一种自分流复合冷却燃烧室

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005338A (en) * 1957-09-23 1961-10-24 Paul A Libby Nozzle cooling apparatus and method
US3439502A (en) * 1966-01-25 1969-04-22 North American Rockwell Cooling of gas generators
FR2012723A1 (ru) * 1968-07-11 1970-03-20 Messerschmitt Boelkow Blohm
US3630449A (en) * 1970-05-11 1971-12-28 Us Air Force Nozzle for rocket engine
US3648461A (en) 1970-05-13 1972-03-14 Nasa Solid propellent rocket motor nozzle
US4164607A (en) * 1977-04-04 1979-08-14 General Dynamics Corporation Electronics Division Thin film resistor having a thin layer of resistive metal of a nickel, chromium, gold alloy
US4287266A (en) * 1977-12-28 1981-09-01 Grumman Aerospace Corp. Solar selective film and process
US4563399A (en) * 1984-09-14 1986-01-07 Michael Ladney Chromium plating process and article produced
US4774148A (en) * 1984-12-28 1988-09-27 Showa Laminate Printing Co., Ltd. Composite sheet material for magnetic and electronic shielding and product obtained therefrom
US4707225A (en) * 1986-01-06 1987-11-17 Rockwell International Corporation Fluid-cooled channel construction
US5103637A (en) * 1990-10-24 1992-04-14 Mitsubishi Heavy Industries, Ltd. Rocket engine combustion chamber
EP0605179B1 (en) * 1992-12-22 1997-05-02 Citizen Watch Co. Ltd. Hard carbon coating-clad base material
US5626972A (en) * 1994-06-02 1997-05-06 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
US6106958A (en) * 1997-04-30 2000-08-22 Masco Corporation Article having a coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Конструкция и проектирование жидкостных ракетных двигателей под общей редакцией проф. ГАХУНА Г.Г. - М.: Машиностроение, 1989, с. 101 - 108, рис. 6.1. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768662C2 (ru) * 2017-12-02 2022-03-24 Аэроджет Рокетдайн, Инк. Медная камера сгорания с креплением к форсуночной головке через безмедное вварное переходное кольцо
CN113074387A (zh) * 2021-04-29 2021-07-06 北京航空航天大学 一种带有桁架结构的再生冷却通道

Also Published As

Publication number Publication date
US20020053197A1 (en) 2002-05-09
EP1022456A2 (en) 2000-07-26
US6442931B1 (en) 2002-09-03
DE69924462T2 (de) 2006-02-16
EP1022456A3 (en) 2001-10-10
DE69924462D1 (de) 2005-05-04
EP1022456B1 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
RU2158840C2 (ru) Корпус камеры жидкостного ракетного двигателя
CA2422955C (en) Shock wave reflector and detonation chamber
JP5395574B2 (ja) 蒸気機器
RU2274763C2 (ru) Элемент ракетного двигателя и способ изготовления такого элемента ракетного двигателя
JP2011149430A (ja) チューブ体および排ガスシステム
GB2242507A (en) Core-forming explosive charge.
EP1511930B1 (en) Wall structure
US6314720B1 (en) Rocket combustion chamber coating
CN107630768B (zh) 一种导弹发动机带热障涂层挡药板结构
RU2403491C2 (ru) Термосиловая охлаждаемая конструкция стенки элемента высокотемпературного воздушно-газового тракта
RU2273756C2 (ru) Элемент ракетного двигателя и способ изготовления такого элемента ракетного двигателя
US4681261A (en) Heat resistant short nozzle
US3261558A (en) Rocket fluid discharge nozzle
US3691955A (en) Stress relieved grains
JP4378435B2 (ja) 高性能エンジン用の燃焼室及びノズル
US3451222A (en) Spray-cooled rocket engine
JP2809370B2 (ja) 高温燃焼エンジン
US20030230071A1 (en) Wall structure
US3210933A (en) Nozzle
US3126702A (en) newcomb
US3439503A (en) Rocket engine cooling
JP2000504804A (ja) ロケットエンジンノズル
US20070144142A1 (en) Outlet nozzle and a method for manufacturing an outlet nozzle
RU2304726C2 (ru) Корпус ракетного двигателя на твердом топливе
US3700171A (en) Cooling techniques for high temperature engines and other components

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090122

NF4A Reinstatement of patent

Effective date: 20100627

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180122