RU2157823C1 - Способ термической переработки высокосернистых сланцев - Google Patents

Способ термической переработки высокосернистых сланцев Download PDF

Info

Publication number
RU2157823C1
RU2157823C1 RU99113170/04A RU99113170A RU2157823C1 RU 2157823 C1 RU2157823 C1 RU 2157823C1 RU 99113170/04 A RU99113170/04 A RU 99113170/04A RU 99113170 A RU99113170 A RU 99113170A RU 2157823 C1 RU2157823 C1 RU 2157823C1
Authority
RU
Russia
Prior art keywords
gas
rectification
vapor
fractions
boiling
Prior art date
Application number
RU99113170/04A
Other languages
English (en)
Inventor
А.И. Блохин
М.И. Зарецкий
Г.П. Стельмах
Ю.Ф. Цикунов
Б.К. Нефедов
Клеменсас Антанас Антано Иорудас
Э.М. Чартов
С.П. Михненко
А.Е. Миронова
Original Assignee
Научно-технический центр "Экосорб" Ассоциации "Космонавтика - Человечеству"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-технический центр "Экосорб" Ассоциации "Космонавтика - Человечеству" filed Critical Научно-технический центр "Экосорб" Ассоциации "Космонавтика - Человечеству"
Priority to RU99113170/04A priority Critical patent/RU2157823C1/ru
Application granted granted Critical
Publication of RU2157823C1 publication Critical patent/RU2157823C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Описывается способ термической переработки высокосернистых сланцев, включающий сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой в качестве твердого теплоносителя на стадию термического разложения, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную волу и выкипающую до 175oC бензиновую фракцию смолы и ректификацию последней. Способ отличается тем, что ректификацию проводят с последовательным выделением трех фракций с пределами кипения 79 - 90, 90 - 116 и 116 - 145oC, каждую из которых подвергают дальнейшей экстративной ректификации в присутствии одного и того же селективного растворителя N-метилпирролидона, с последующим выделением из него ректификацией тиофена, концентрата метилтиофенов и концентрата диметилтиофенов соответственно из каждой фракции и с получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации. Технический результат - повышение эффективности и рентабельности процесса. 1 ил.

Description

Изобретение относится к области термической переработки высокосернистых горючих сланцев с целью получения соединений ряда тиофенов, имеющих практическое значение для производства фармакологических и ветеринарных препаратов, а также полиорганосилоксанов, обладающих уникальными физическими свойствами.
Известен способ термической переработки высокосернистых горючих сланцев, включающий высокоскоростной пиролиз измельченного сырья с образованием твердого остатка и парогазовой смеси, охлаждение последней с конденсацией паров воды и смолы, разделение полученной смеси на воду и пиробензол, содержащий тиофен и его гомологи в количестве 6,2-11,5 мас.% (см., например, В.Г. Каширский "О составе пиролизуемого бензола многосернистых горючих сланцев". Горючие сланцы, 1993, N 6 с. 12-16).
Недостатком известного способа является то, что в процессе высокоскоростного окислительного пиролиза для нагрева измельченного сырья используют газовый теплоноситель, что ведет к снижению концентрации пиробензола в парогазовой смеси, усложняет его выделение и тем самым значительно уменьшает выход тиофена и его гомологов. Кроме того, дальнейшая технология выделения целевых соединений тиофенового ряда в процессе отсутствует.
Известен способ термической переработки высокосернистых горючих сланцев, включающий сушку и термодеструкцию сырья с образованием твердого остатка и парогазовой смеси, охлаждение последней, получение смолы, ее ректификацию с выделением фракций смолы (см. , например, Справочник сланцепереработчика, справ. Изд. Под ред. М.Г. Рудина и Н.Д. Серебрянникова - Л.: Химия, 1988, с. 19; 100-102; 246).
Недостатком этого способа является то обстоятельство, что термическую переработку осуществляют в шахтных генераторах, отличительной особенностью работы которых является крайне малый выход легких фракций (2-3% от массы всей смолы), которые можно рассматривать как потенциальное сырье для получения соединений ряда тиофена. Образующиеся на стадии термодеструкции пары легких фракций, в том числе и тиофеновые соединения, безвозвратно теряют, сжигая в смеси с генераторным газом в топках котлов и на факеле.
Наиболее близким техническим решением является способ термической переработки высокосернистых горючих сланцев, включающий сушку измельченных сланцев, их нагрев твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой на стадию нагрева в качестве твердого теплоносителя, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы, ректификацию последней с выделением тиофенового концентрата (см. пат. РФ N 2128680, С 10 В 53/06, 10.04.99).
Недостатком известного способа является то, что в указанном процессе удается получить только тиофеновый концентрат без дальнейшей более глубокой переработки полученного в виде смеси продукта для производства чистого тиофена и его гомологов, тем самым уменьшаются эффективность и рентабельность переработки высокосернистого сырья.
Задачей изобретения является повышение эффективности и рентабельности процесса за счет получения из высокосернистых сланцев ценных целевых химических продуктов, таких как чистый тиофен и его гомологи.
Для обеспечения поставленной задачи способ термической переработки высокосернистых сланцев включает сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой на стадию термического разложения, очистку парогазовой смеси от механических примесей, отделение от парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы, ректификацию последней с выделением трех фракций с пределами кипения 79-90oC, 90-116oC и 116-145oC, экстрактивную ректификацию каждой из фракций в присутствии одного и того же селективного растворителя (в частности, N-метилпирролидона, 2-пирролидона, диэтиленгликоля или сульфолана), ректификацию последнего с выделением чистого тиофена, концентрата 2- и 3- метилгиофенов и концентрата диметилгиофенов (в основном, 2,5- диметил- и 2,3-диметилтиофена) соответственно из каждой фракции и получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации.
Причем в качестве селективного растворителя наиболее предпочтительно используют для всех трех фракций N-метилпирролидон.
Предложенный способ позволяет получить чистый тиофен и его гомологи, используя технологию переработки высокосернистых сланцев с твердым теплоносителем, которая обеспечивает выделение паров легких фракций смолы, содержащих углеводородный состав, соответствующий только данному методу переработки сырья, и которая обеспечивает также получение других продуктов нефтехимического производства.
Использование одного и того же селективного растворителя для выделения компонентов в каждом цикле экстрактивной ректификации значительно упрощает эксплуатацию, а регенерация растворителя и повторное использование в каждом цикле экстрактивной ректификации обеспечивают его невысокий расход.
На чертеже представлена схема установки для осуществления предложенного способа.
Установка содержит сушилку 1, реактор 2 с пылеосадительной камерой 3, аэрофонтанную топку 4, орошаемый скруббер 5 с охладителем орошающего агента 6 и ректификационную колонну 7. Верхняя часть ректификационной колонны 7 последовательно соединена с конденсатором-охладителем 8 и сепаратором 9, патрубок для вывода бензиновой фракции которого, соединен с ректификационной колонной 10 через куб-кипятильник 11. Ректификационная колонна 10 снабжена дефлегматором 12 с патрубком для последовательного отвода трех фракций 79-90oC, 90- 116oC и 116-145oC, который подключен к экстрактивной ректификационной колонне 13, снабженной кубом-кипятильником 14, дефлегматором 15 и соединенной по линии вывода смеси селективного растворителя с целевым компонентом с ректификационной колонной 16. Последняя снабжена кубом-кипятильником 17, дефлегматором 18 с патрубком для вывода целевого продукта (Т-тиофена, МТ-концентрата метилгиофена, ДМТ - концентрата диметилгиофена). Линия возврата очищенного селективного растворителя в экстрактивную ректификационную колонну 13 присоединена ниже точки ввода флегмы в эту колонну.
Способ осуществляется следующим образом.
Исходный сланец с размером частиц 0-25 мм подают в сушилку 1, в которой его сушат при 100-160oC и направляют в реактор 2. В реакторе 2 сланец подвергают термическому разложению твердым теплоносителем при 470-560oC с образованием коксозольного остатка и парогазовой смеси. Коксозольный остаток направляют в аэрофонтанную топку 4 для его сжигания с образованием золы, подаваемой в качестве твердого теплоносителя в реактор 2. Избыток золы выводят из процесса. Полученные при сжигании дымовые газы применяют в качестве сушильного агента на стадии сушки. Парогазовую смесь из реактора 2 очищают от механических примесей в осадительной камере 3 и подают на выделение фракций смолы, выкипающих выше 175oC. Выделение этих фракций осуществляют сначала путем охлаждения парогазовой смеси орошением до конденсации фракции смолы с температурой кипения выше 350oC в скруббере 5, а затем ректификацией в колонне 7 с конденсацией и выделением фракций, выкипающих выше 175oC. Оставшуюся неконденсируемую парогазовую смесь подают в конденсатор-охладитель 8, откуда полученный конденсат направляют в сепаратор 9, где его разделяют на газ полукоксования, подсмольную воду и бензиновую фракцию, кипящую до 175oC. Полученную бензиновую фракцию подают в ректификационную колонну 10, где из этой фракции выделяют три целевые фракции с пределами кипения 79-90oC, 90-116oC и 116-145oC. Каждую из полученных фракций в отдельности подвергают экстрактивной ректификации в колонне 13, при этом в верхнюю часть колонны ниже точки ввода флегмы подают селективный растворитель (N -метилпирролидон). Полученную смесь растворителя и целевого продукта (тиофен, метилгиофены, диметилгиофены) выводят из нижней части колонны 13 и направляют в ректификационную колонну 16, в которой эта смесь разделяется с получением целевого продукта (тиофен, концентрат метилтиофенов, диметилтиофеновый концентрат) и выделением очищенного селективного растворителя, возвращаемого на орошение колонны экстрактивной ректификации 13.
Пример 1. На установку подают высокосернистый сланец (Кашпирское месторождение): Wч-20%; (CO2) d м -7%; S d t -3,5%; T d sk -10%; Q d σ -5,58 МДж/кг. Измельченный до 15 мм сланец сушат до 130oC и подвергают термическому разложению с твердым теплоносителем, имеющим температуру 835oC. В результате термодеструкции из каждой тонны рабочего сланца получают 152 кг парогазовой смеси. Парогазовую смесь после отделения фракций смолы, выкипающих выше 175oC, охлаждают до 20-30oC и разделяют на газ полукоксования, подсмольную воду и бензиновую фракцию, кипящую при температуре ниже 175oC. В результате получают около 10 кг/т сланца вышеуказанной фракции, которую подвергают ректификации в колонне 10. В результате четкой ректификации при высоких флегмовых числах 30 - 40, атмосферном давлении, температуре теплоносителя в кубе-кипятильнике 230-250oC из фракции алканов верхней части колонны 10 в виде дистиллята последовательно отбирают три фракции, выкипающие в пределах 79-90oC (0,118 кг/т сланца); 90-116oC (0,785 кг/т сланца) и 116-145oC (1,935 кг/т сланца). Кроме того, выделяют фракцию, выкипающую до 78-79oC, соответствующую легкокипящим алканам и моноциклоалканам (1,65 кг/т). Полученную легкокипящую фракцию (до 78-79oC) используют как товарный продукт добавка к моторному топливу. Кубовый остаток утилизируют в виде композиций для дорожных покрытий, пропитки шпал.
Каждую из трех фракций в отдельности подвергают дальнейшей экстрактивной ректификации. При этом в качестве селективного растворителя используют один и тот же органический растворитель N - метилпирролидон. Фракцию, выкипающую в пределах 79-90oC, подают в среднюю часть колонны экстрактивной ректификации 13, в верхнюю часть которой вводят N - метилпирролидон в количестве 0,354 кг/т сланца. Процесс проводят при атмосферном давлении, флегмовом числе 5 - 7, температуре в верхней части колонны 80oC, температуре теплоносителя в кубе-кипятильнике 14 230 - 250oC. Из нижней части колонны 13 выводят N-метилпирролидон с растворенным в нем тиофеном и направляют в колонну 16, ректификационный процесс в которой проводят при атмосферном давлении, флегмовом числе 1-3, температуре в верхней части колонны 84oC. Из верхней части колонны отбирают тиофен (98%-ный) в количестве 0,033 кг/т сланца, который широко используют в органическом синтезе.
Пример 2. Фракцию, выкипающую в пределах 90-116oC, полученную по примеру 1, в количестве 0,785 кг/т подают в среднюю часть колонны экстрактивной ректификации 13. Температура в верхней части колонны составляет 110oC, давление - атмосферное, флегмовое число - 5 - 10. В верхнюю часть колонны вводят N - метилпирролидон в количестве 2,355 кг/т сланца. Из нижней части колонны выводят N - метилпирролидон с растворенными в нем метилгиофенами и подают в среднюю часть колонны 16. Процесс ректификации проводят при атмосферном давлении, флегмовом числе 1 - 3 и температуре в верхней части колонны 113-116oC. Из верхней части колонны отбирают концентрат метилгиофенов в количестве 0,533 кг/т сланца, который является ценным гетероциклическим сырьем для органического синтеза. Регенерированный N-метилпирролидон возвращают в колонну 13.
Пример 3. Фракцию, выкипающую в пределах 116-145oC, полученную по примеру 1, в количестве 1,935 кг/т подвергают экстрактивной ректификации в колонне 13. В верхнюю часть колонны вводят N-метилпирролидон в количестве 5,81 кг/т сланца. Процесс ведут при атмосферном давлении, флегмовом числе 5-7 и температуре в верхней части колонны 136-144oC. Из нижней части колонны выводят N -метилпирролидон с растворенными в нем диметилгиофенами и подают в среднюю часть колонны 16. Процесс ректификации проводят при атмосферном давлении, флегмовом числе 2 - 3 и температуре в верхней части колонны 132-137oC. Из верхней части колонны отбирают концентрат диметилгиофенов в количестве 1,45 кг/т сланца, используемый как источник гетероциклического сырья в органическом синтезе. Регенерированный N-метилпирролидон возвращают в колонну 13.

Claims (1)

  1. Способ термической переработки высокосернистых сланцев, включающий сушку измельченных сланцев, их термическое разложение твердым теплоносителем с образованием коксозольного остатка и парогазовой смеси, сжигание коксозольного остатка с образованием золы, возвращаемой в качестве твердого теплоносителя на стадию термического разложения, очистку парогазовой смеси от механических примесей, выделение из парогазовой смеси фракций смолы, выкипающих выше 175oC, охлаждение оставшейся парогазовой смеси с разделением ее на газ полукоксования, подсмольную воду и выкипающую до 175oC бензиновую фракцию смолы и ректификацию последней, отличающийся тем, что ректификацию проводят с последовательным выделением трех фракций с пределами кипения 79 - 90, 90 - 116 и 116 - 145oC, каждую из которых подвергают дальнейшей экстрактивной ректификации в присутствии одного и того же селективного растворителя N-метилпирролидона, с последующим выделением из него ректификацией тиофена, концентрата метилтиофенов и концентрата диметилтиофенов соответственно из каждой фракции и с получением очищенного селективного растворителя, возвращаемого на стадию экстрактивной ректификации.
RU99113170/04A 1999-06-15 1999-06-15 Способ термической переработки высокосернистых сланцев RU2157823C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99113170/04A RU2157823C1 (ru) 1999-06-15 1999-06-15 Способ термической переработки высокосернистых сланцев

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99113170/04A RU2157823C1 (ru) 1999-06-15 1999-06-15 Способ термической переработки высокосернистых сланцев

Publications (1)

Publication Number Publication Date
RU2157823C1 true RU2157823C1 (ru) 2000-10-20

Family

ID=20221516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99113170/04A RU2157823C1 (ru) 1999-06-15 1999-06-15 Способ термической переработки высокосернистых сланцев

Country Status (1)

Country Link
RU (1) RU2157823C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Химическая технология твердых горючих ископаемых. / Под ред. Г.Н.Макарова и Т.Д.Харламповича. - М.: Химия, 1986, с.303-304,307. Справочник Коксохимика, - М.: Металлугия, 1966, т.III, с.197-204, 206-207. *

Similar Documents

Publication Publication Date Title
US4162902A (en) Removing phenols from waste water
US4317703A (en) Pyrolysis process utilizing pyrolytic oil recycle
RU2005103839A (ru) Способ очистки отработанных масел экстракцией растворителями
CN104232129A (zh) 一种有机废弃物与煤共热解制取半焦及焦油的方法
Tiwari et al. A review of coke making by-products
US2040100A (en) Treatment of tar
RU2157823C1 (ru) Способ термической переработки высокосернистых сланцев
US1993344A (en) Light oil removal
KR980009212A (ko) 방향족 화합물과 비방향족 화합물을 함유하는 탄화수소 혼합물로부터 순수 탄화수소 화합물을 회수하는 방법
US1639417A (en) Method of carbonizing fuel
RU2371467C1 (ru) Способ термической переработки высокосернистых сланцев
CN106520157A (zh) 一种气化式干馏热解炭化方法
CA1122152A (en) Extracting aromatic hydrocarbons from mixtures containing same
US1847597A (en) Treatment of crude pyroligneous acid
US3537984A (en) Process for the extraction and recovery of aromatic hydrocarbons
US2198743A (en) Process for purifying gases
KR970001511A (ko) 폐타이어/폐유의 복합열분해에 의한 오일화 장치와 그 방법
US2040101A (en) Treatment of tar
RU2329292C1 (ru) Способ и установка термической переработки высокозольных и низкокалорийных твердых топлив
US4373995A (en) Pyrolysis system utilizing pyrolytic oil recycle
SU1703673A1 (ru) Способ термической переработки горючих сланцев
RU2128680C1 (ru) Способ термической переработки высокосернистых топлив
US1904521A (en) Separation of oils from solid residues
US2623845A (en) Distillation of wood carbonization
RU2634018C1 (ru) Способ термической переработки высокосернистых горючих сланцев

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20070522

PC4A Invention patent assignment

Effective date: 20100128

PC41 Official registration of the transfer of exclusive right

Effective date: 20140516

PC41 Official registration of the transfer of exclusive right

Effective date: 20140822

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170616