RU2156372C1 - Автономный энергомодуль "стирлинг-стирлинг" - Google Patents

Автономный энергомодуль "стирлинг-стирлинг" Download PDF

Info

Publication number
RU2156372C1
RU2156372C1 RU99110185A RU99110185A RU2156372C1 RU 2156372 C1 RU2156372 C1 RU 2156372C1 RU 99110185 A RU99110185 A RU 99110185A RU 99110185 A RU99110185 A RU 99110185A RU 2156372 C1 RU2156372 C1 RU 2156372C1
Authority
RU
Russia
Prior art keywords
heat
engine
stirling
pump
heat exchanger
Prior art date
Application number
RU99110185A
Other languages
English (en)
Inventor
Н.Г. Кириллов
Д.А. Авсюкевич
Ю.М. Сударь
А.Н. Кириллов
Original Assignee
Военный инженерно-космический университет им. А.Ф. Можайского
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Военный инженерно-космический университет им. А.Ф. Можайского filed Critical Военный инженерно-космический университет им. А.Ф. Можайского
Priority to RU99110185A priority Critical patent/RU2156372C1/ru
Application granted granted Critical
Publication of RU2156372C1 publication Critical patent/RU2156372C1/ru

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области теплоэнергетики и газовых регенеративных машин, работающих по прямому и обратному циклам Стирлинга, предназначенных в качестве автономных энергоустановок для стационарных и передвижных объектов при одновременном производстве электроэнергии и тепла. Достигаемый технический результат - повышение КПД установки в целом и снижение негативного экологического воздействия на окружающую среду. При работе двигатель 1 производит полезную энергию, преобразуемую в электрическую энергию с помощью электрогенератора 4. Для охлаждения двигателя Стирлинга 1 предусмотрена система охлаждения 10. Теплота охлаждающей жидкости системы 10 после подогрева в теплообменнике 11 используется в тепловом насосе Стирлинга 6 для уменьшения мощности электродвигателя 9. Затем охлаждающая жидкость охлаждается до температуры окружающей среды в теплообменнике 12 и поступает в холодильник 3 двигателя 1 через промежуточную емкость 13. В камеру сгорания также подается топливо по линии 23, в результате сгорания которого образуются выхлопные газы, которые по линии сброса 17 сначала поступают в теплообменник подогрева 5, а затем в теплообменник 11, где отдают остаточную теплоту охлаждающей жидкости перед ее поступлением в тепловой насос 6. Нагретый в теплообменниках 5 и 7 теплоноситель внешней системы теплопотребления по магистралям 18 и 19 поступает в смесительную емкость 20, где обе части теплоносителя перемешиваются, и по магистрали 21 насосом 22 подается внешнему потребителю. 1 ил.

Description

Изобретение относится к области теплоэнергетики и газовых регенеративных машин, работающих по прямому и обратному циклам Стирлинга, предназначено в качестве автономных энергоустановок для стационарных и передвижных объектов при одновременном производстве электроэнергии и тепла.
Известны децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга, отличающиеся наиболее высокой эффективностью и экологической чистотой, так как в качестве рабочего тела теплового насоса используются озононеразрушающие вещества - гелий, водород, воздух и т.д. (Кириллов Н.Г., Сударь Ю.М. и др. Децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга / Информационный бюллетень: "Теплоэнергетические технологии"/, N 1. СПб, 1997, стр. 38-40). Однако для уменьшения подводимой электрической энергии для привода теплового насоса желательно использовать в качестве источника низкопотенциальной теплоты, рабочую среду с максимально высокой температурой.
Известно устройство - машина, работающая по обратному циклу Стирлинга, содержащая полости сжатия и расширения, картер, регенератор, теплообменник нагрузки, холодильник, вытеснитель, рабочий поршень с уплотнением штока вытеснителя, привод (патент России N 2079069, Бюл. N 13 от 10.05.97).
Известно, что автономные энергоисточники на основе двигателей Стирлинга обеспечивают высокую эффективность и снижение концентрации вредных выбросов в выхлопных газах (Кириллов Н.Г. Применение высокоэффективных и экологически чистых машин Стирлинга в судовой энергетике. / Труды 2-й межд. конфер. по морским интеллектуальным технологиям "Моринтех-97"/, Том N 5, СПб., 1997, стр. 140).
Известно устройство двигателя Стирлинга, включающее в себя камеру сгорания, нагреватель, регенератор, холодильник, поршневую группу и привод (Г. Ридер, Ч. Хупер. Двигатели Стирлинга. М., Изд. "Мир", 1986, стр. 55).
Известно техническое решение теплоэнергетической установки с двигателем и тепловым насосом, работающей по прямому и обратному циклам Стирлинга, при этом двигатель и тепловой насос соединены через вал (Патент США N 4458495. Реферативный журнал "Изобретение стран мира", выпуск В-97, N 3, 1985, стр. 13). Однако, двигатель и тепловой насос Стирлинга выполнены в виде свободнопоршневых машин, что ограничивает возможности установки по производительности электроэнергии и тепла.
Известна комбинированная установка на основе двигателя Стирлинга с электрогенератором на одном валу, линиями подачи топлива и теплообменником для подогрева жидкости, через который проходят выхлопные газы двигателя Стирлинга, при этом нагретая жидкость передается во внешние магистрали (Заявка ЕПВ N 0457399. Реферативный журнал "Изобретение стран мира", выпуск В-65, N 5, 1993, стр. 13). Однако, данная установка имеет невысокую производительность по тепловой энергии, а также в ней не используется теплота охлаждающей жидкости двигателя, что приводит к потере полезной низкопотенциальной энергии.
Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении КПД установки в целом и снижении негативного экологического воздействия на окружающую среду.
Для достижения этого технического результата автономный энергомодуль "Стирлинг-Стирлинг", включающий в себя двигатель Стирлинга с электрогенератором на одном валу, линии подачи топлива и теплообменник для подогрева жидкости внешней системы теплопотребления, через который проходят выхлопные газы двигателя Стирлинга, внешние магистрали системы теплопотребления, снабжен тепловым насосом, работающим по обратному циклу Стирлинга, привод которого может осуществляться от вала двигателя Стирлинга или от внешнего электродвигателя, и связанным с двигателем с помощью системы охлаждения двигателя, проходящей через холодильники двигателя и теплового насоса, включающей в себя теплообменник подогрева охлаждающей жидкости двигателя, расположенным перед тепловым насосом, теплообменник охлаждения охлаждающей жидкости двигателя, расположенным после теплового насоса, промежуточную емкость и циркуляционный насос, обеспечивающий движение охлаждающей жидкости двигателя через холодильники двигателя и теплового насоса, а также линией подачи воздуха в камеру сгорания двигателя, с регулирующим клапаном, проходящей через теплообменник охлаждения, и линией сброса выхлопных газов из камеры сгорания двигателя, проходящей через теплообменник подогрева, при этом внешняя система теплопотребления включает в себя магистраль нагрева теплоносителя, проходящего через теплообменник подогрева жидкости, магистраль нагрева теплоносителя, проходящую через теплообменник нагрузки теплового насоса, которые соединяются в смесительной емкости, и магистраль с насосом для подачи нагретого теплоносителя потребителю.
Введение в состав автономного энергомодуля "Стирлинг-Стирлинг" теплового насоса Стирлинга, связанного с двигателем Стирлинга через систему охлаждения двигателя, содержащей теплообменники подогрева и охлаждения охлаждающей жидкости, через которые проходят, соответственно линия сброса отработанных газов двигателя и линия подачи воздуха, позволяет получить новое свойство, заключающееся в использовании остаточного тепла отработанных газов двигателя и теплоты системы охлаждения двигателя для снижения потребляемой тепловым насосом полезной мощности, а также использование воздуха для охлаждения охлаждающей жидкости системы охлаждения, перед ее подачей в холодильник двигателя, что приводит к повышению КПД установки в целом, при этом применение двигателя Стирлинга с низким уровнем выброса вредных веществ и теплового насоса Стирлинга с озононеразрушающим рабочим телом, снижает уровень экологического загрязнения окружающей среды.
На чертеже изображен автономный энергомодуль "Стирлинг-Стирлинг".
Автономный энергомодуль "Стирлинг-Стирлинг" включает в себя двигатель Стирлинга 1 с камерой сгорания 2 и холодильником 3, электрогенератор 4, расположенный на одном валу с двигателем 1, теплообменник подогрева жидкости внешней системы теплопотребления 5, тепловой насос Стирлинга 6 с теплообменником нагрузки 7, холодильником 8 и электроприводом 9, системы охлаждения 10 двигателя 1, проходящей через холодильники 3 и 8, и состоящей из теплообменника подогрева охлаждающей жидкости 11, расположенного перед тепловым насосом 6, теплообменника охлаждения охлаждающей жидкости 12, расположенного после теплового насоса 6, промежуточной емкости 13 и насоса 14, линию подачи воздуха 15, проходящую через теплообменник 12 в камеру сгорания 2 двигателя 1, с регулирующим клапаном 16, линию сброса выхлопных газов 17 двигателя 1, проходящую через теплообменник 5 и 11, систему внешнего теплопотребления, состоящую из магистрали нагрева теплоносителя системы внешнего теплопотребления 18, проходящей через теплообменник 5, и магистрали нагрева теплоносителя 19, проходящей через теплообменник нагрузки 7 теплового насоса 6. Магистрали 18 и 19 соединяются в смесительной емкости 20, из которой по магистрали 21 с помощью насоса 22 нагретый теплоноситель подается потребителю. Двигатель 1 снабжен линией подачи топлива 23.
Автономный энергомодуль "Стирлинг-Стирлинг" работает следующим образом.
При работе двигатель 1 производит полезную энергию, преобразуемую в электрическую энергию с помощью электрогенератора 4, расположенного на одном валу с двигателем 1. Для охлаждения двигателя Стирлинга 1 предусмотрена система охлаждения 10, по которой, приняв теплоту от рабочего тела двигателя 1 в холодильнике 3, охлаждающая жидкость поступает в теплообменник подогрева 11, где повышается ее температура за счет теплообмена с выхлопными газами, и подается в холодильник 8 теплового насоса Стирлинга 6. За счет подвода внешней энергии от электродвигателя 9 (или от привода двигателя 1) происходит передача теплоты охлаждающей жидкости системы охлаждения 10 теплоносителю системы внешнего теплопотребления, протекающему через теплообменник нагрузки 7 теплового насоса 6 по магистрали 19. Отдав значительную часть своей теплоты рабочему телу теплового насоса 6, охлаждающая жидкость поступает в теплообменник охлаждения 12, где охлаждается до температуры окружающей среды за счет теплообмена с воздухом, и поступает в промежуточную емкость 13, откуда с помощью насоса 14 вновь подается в холодильник 3, для охлаждения двигателя 1. Воздух, подаваемый по линии 15, проходит через теплообменник 12, где нагревается от охлаждающей жидкости системы охлаждения 10, и подается в камеру сгорания 2 двигателя 1, при этом количество подаваемого воздуха регулируется клапаном 16. В камеру сгорания также подается топливо по линии 23, в результате сгорания которого образуются выхлопные газы с высокой температурой. Эти газы по линии сброса 17 поступают в теплообменник подогрева 5, где нагревают часть теплоносителя внешней системы теплопотребления, поступающего в теплообменник 5 по магистрали 18. После теплообменника 5 выхлопные газы поступают в теплообменник 11, где отдают остаточную теплоту охлаждающей жидкости, перед ее поступлением в тепловой насос 6. Затем выхлопные газы удаляются в окружающую среду. Нагретый в теплообменниках 5 и 7, теплоноситель внешней системы теплопотребления по магистралям 18 и 19 поступают в смесительную емкость 20, где обе части теплоносителя перемещаются, и по магистрали 21 насосом 22 подается внешнему потребителю.
Источники информации
1. Кириллов Н.Г., Сударь Ю.М. и др. Децентрализованные системы теплоснабжения с тепловыми насосами, работающими по обратному циклу Стирлинга. / Информационный бюллетень: "Теплоэнергетические технологии"/. N 1 С-Пб., 1997, стр. 38-40.
2. Патент России N 2079069, Бюл. N 13 от 10.05.97 года.
3. Кириллов Н.Г. Применение высокоэффективных и экологически чистых машин Стирлинга в судовой энергетике. /Труды 2-й межд. конфер. по морским интеллектуальным технологиям "Моринтех-97"/, Том N 5, С-Пб., 1997, стр. 140.
4. Г. Ридер., Ч. Хупер. Двигатели Стирлинга. М., Изд. "Мир", 1986, стр. 55.
5. Патент США N 4458495. Реферативный журнал "Изобретение стран мира", выпуск В-97, N 3, 1985, стр. 13.
6. Заявка ЕВП N 0457399. Реферативный журнал "Изобретение стран мира", выпуск В-65, N 5, 1993, стр. 13 - прототип.

Claims (1)

  1. Автономный энергомодуль "Стирлинг-Стирлинг", включающий в себя двигатель Стирлинга с электрогенератором на одном валу, линии подачи топлива и теплообменник для подогрева жидкости внешней системы теплопотребления, через который проходят выхлопные газы двигателя Стирлинга, внешние магистрали системы теплопотребления, отличающийся тем, что снабжен тепловым насосом, работающим по обратному циклу Стирлинга, привод которого может осуществляться от вала двигателя Стирлинга или от внешнего электродвигателя, и связанным с двигателем с помощью системы охлаждения двигателя, проходящий через холодильники двигателя и теплового насоса, включающий в себя теплообменник подогрева охлаждающей жидкости двигателя, расположенный перед тепловым насосом, теплообменник охлаждения охлаждающей жидкости двигателя, расположенный после теплового насоса, промежуточную емкость и циркуляционный насос, обеспечивающий движение охлаждающей жидкости двигателя через холодильники двигателя и теплового насоса, а также линией подачи воздуха в камеру сгорания двигателя с регулирующим клапаном, проходящей через теплообменник охлаждения, и линией сброса выхлопных газов из камеры сгорания двигателя, проходящей через теплообменник подогрева, при этом внешняя система теплопотребления включает в себя магистраль нагрева теплоносителя, проходящую через теплообменник подогрева жидкости, магистраль нагрева теплоносителя, проходящую через теплообменник нагрузки теплового насоса, которые соединяются в смесительной емкости, и магистраль с насосом для подачи нагретого теплоносителя потребителю.
RU99110185A 1999-05-19 1999-05-19 Автономный энергомодуль "стирлинг-стирлинг" RU2156372C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99110185A RU2156372C1 (ru) 1999-05-19 1999-05-19 Автономный энергомодуль "стирлинг-стирлинг"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99110185A RU2156372C1 (ru) 1999-05-19 1999-05-19 Автономный энергомодуль "стирлинг-стирлинг"

Publications (1)

Publication Number Publication Date
RU2156372C1 true RU2156372C1 (ru) 2000-09-20

Family

ID=20219852

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99110185A RU2156372C1 (ru) 1999-05-19 1999-05-19 Автономный энергомодуль "стирлинг-стирлинг"

Country Status (1)

Country Link
RU (1) RU2156372C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775036A (zh) * 2014-02-27 2014-05-07 西南石油大学 基于斯特林发动机的游梁式抽油机动力装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775036A (zh) * 2014-02-27 2014-05-07 西南石油大学 基于斯特林发动机的游梁式抽油机动力装置
CN103775036B (zh) * 2014-02-27 2016-02-03 西南石油大学 基于斯特林发动机的游梁式抽油机动力装置

Similar Documents

Publication Publication Date Title
EP0457399B1 (en) Cogeneration system with a stirling engine
US3974642A (en) Hybrid cycle power plant with heat accumulator for storing heat exchange fluid transferring heat between cycles
HU220427B (hu) Kompressziós és expanziós kamrás hőerőgép
KR19980018292A (ko) 가스 터빈 및 그 작동 방법과 발전 시스템
RU2487305C1 (ru) Тригенерационная установка на базе микротурбинного двигателя
US20130277968A1 (en) Stationary Power Plant, in Particular a Gas Power Plant, for Generating Electricity
US4049299A (en) Anti-polluting power plant using compressors and gas turbines
RU2156372C1 (ru) Автономный энергомодуль "стирлинг-стирлинг"
RU2440504C1 (ru) Когенерационная установка с двигателем внутреннего сгорания и двигателем стирлинга
RU2156373C1 (ru) Автономная энергоустановка "стирлинг-стирлинг"
CN110259598A (zh) 一种基于斯特林循环的船舶辅助发电系统
RU174173U1 (ru) Мобильная когенерационная энергоустановка
RU2520796C2 (ru) Когенерационная установка
KR102153769B1 (ko) 선박의 폐열회수 시스템
CN204729187U (zh) 一种基于斯特林发动机的分布式能源系统
RU2196243C2 (ru) Комбинированная стирлинг-установка для одновременного производства электроэнергии и тепла
RU2162532C1 (ru) Автономная стирлинг-установка для одновременного производства электроэнергии и тепла
RU2164615C1 (ru) Теплоэнергетическая установка
RU2162534C1 (ru) Автономная когенерационная энергоустановка
RU2163684C1 (ru) Автономная комбинированная установка для одновременного производства электроэнергии и тепла
CN110274389A (zh) 一种适用于船舶的新型热泵热水器
RU2099564C1 (ru) Энергетическая установка с двигателем стирлинга
RU2259516C1 (ru) Энергохолодильная система "стирлинг-стирлинг" для мобильных комплексов
RU2164614C1 (ru) Автономная теплоэнергетическая установка с двигателем стирлинга
JP2005171861A (ja) ランキンサイクル発電システム