RU2152595C1 - Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью - Google Patents

Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью Download PDF

Info

Publication number
RU2152595C1
RU2152595C1 RU98119622A RU98119622A RU2152595C1 RU 2152595 C1 RU2152595 C1 RU 2152595C1 RU 98119622 A RU98119622 A RU 98119622A RU 98119622 A RU98119622 A RU 98119622A RU 2152595 C1 RU2152595 C1 RU 2152595C1
Authority
RU
Russia
Prior art keywords
signals
reflected
level
liquids
separation
Prior art date
Application number
RU98119622A
Other languages
English (en)
Inventor
В.И. Вербицкий
Н.Н. Калмыков
А.Н. Калмыков
Original Assignee
Калмыков Андрей Николаевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Калмыков Андрей Николаевич filed Critical Калмыков Андрей Николаевич
Priority to RU98119622A priority Critical patent/RU2152595C1/ru
Application granted granted Critical
Publication of RU2152595C1 publication Critical patent/RU2152595C1/ru

Links

Images

Abstract

Способы используются в автоматизированных системах управления технологическим процессом. Облучают жидкую среду радиоимпульсами СВЧ-генератора, осуществляют прием отраженных от уровней раздела жидкостей радиоимпульсов. Затем производят сканирование по несущей частоте зондирующих радиоимпульсных сигналов от одного конца диапазона рабочих частот к другому с заданным дискретом. Измеряют по квадратурным составляющим отраженных сигналов разность фаз между фазами отраженных сигналов в начале цикла сканирования и фазами в текущий момент сканирования в выделенные моменты времени, соответствующие времени задержки отраженных радиоимпульсных сигналов от каждого уровня раздела жидкостей относительно зондирующих сигналов. Вычисляют в каждом цикле сканирования суммарные разности фаз между фазами отраженных сигналов в начале и конце цикла сканирования для каждого уровня раздела жидкостей и после окончания циклов сканирования по несущей частоте по вычисленным значениям разностей фаз определяют значения уровней жидкостей. Измерения относительных изменений уровней раздела жидкостей осуществляют на фиксированной несущей частоте зондирующих радиоимпульсных сигналов в выделенных временных точках. Обеспечено повышение точности измерения. 2 с. и 2 з.п.ф-лы, 2 ил.

Description

Изобретение относится к бесконтактным средствам контроля и измерения уровня жидких сред или уровней раздела разнородных по электрофизическим свойствам жидкостей и может быть использовано в автоматизированных системах управления технологическими процессами.
Известны [2 - 4] бесконтактные уровнемеры, выполненные на основе излучения видеоимпульсов. В данном способе в направлении контролируемой жидкой среды излучают зондирующие видеоимпульсы, принимают отраженные сигналы и определяют время задержки отраженных сигналов относительно зондирующих. Основными недостатками данного способа являются ограниченная точность измерения интервалов времени между излученными и принятыми импульсными сигналами [2, стр. 54] вследствие большой временной и температурной нестабильности времени запуска генераторов коротких импульсов, порядка (1 - 0,5) нс [4], а также громоздкость антенной системы [3].
Известны [1, 5, 6] бесконтактные уровнемеры, выполненные на основе ЧМ-радиолокатора. Измерение уровня в данном способе сводится к излучению частотно-модулированного зондирующего сигнала в направлении контролируемой среды, прием отраженного сигнала, смешивание его с сигналом, сформированным в местном гетеродине одновременно с передачей зондирующего сигнала, в результате чего образуется сигнал биений при подсчете числа нулей сигнала биений за время одного периода частотной модуляции, по которому определяют уровень жидкости. Основным недостатком данного способа является отсутствие селекции отраженных сигналов от нескольких уровней разделения жидкостей и, следовательно, искажение сигнала биений (когда мощность отраженных от двух уровней раздела жидкостей или уровня и от дна сосуда сигналов одного порядка), которое приводит к существенным погрешностям измерения уровня.
Наиболее близким по технической сущности является способ, приведенный в [1], в котором в направлении контролируемой жидкой среды излучается зондирующий радиоимпульс, принимается и детектируется отраженный от уровней раздела разнородных жидких сред радиоимпульсный сигнал. Измерение уровней в данном способе сводится к измерению интервалов времени между излученным и принятым отраженным от уровней раздела жидкостей радиоимпульсными сигналами.
Недостатком такого уровнемера является ограниченная точность измерения разности интервала времени между зондирующим и отраженным радиоимпульсами. Во-первых, существует нестабильность задержки запуска импульсного модулятора, описанная выше для времяимпульсных уровнемеров, во-вторых, - отсутствие привязки времени излучения радиоимпульса с фазой несущей частоты при некогерентном детектировании приводит к неконтролируемому смещению времени приема радиоимпульсного сигнала после детектирования на величину порядка половины длины волны несущей, что также вносит неконтролируемую погрешность в измерение уровней порядка половины длины волны несущей.
Целью изобретения является повышение точности измерения уровня жидких сред или уровней разделения разнородных по электрофизическим свойствам жидкостей.
Цель изобретения достигается тем, что к способу измерения уровня, в котором излучается зондирующий радиоимпульсный сигнал в направлении контролируемой жидкой среды и принимается отраженный от уровней раздела жидкостей сигнал, добавляется фазовое детектирование с выделением квадратурных составляющих принятого сигнала, измерение по квадратурным составляющим фазы принятых сигналов в выделенных временных точках, соответствующих времени задержки отраженных радиоимпульсов от каждого уровня раздела разнородных по электрофизическим свойствам жидкостей. Изменяя дискретно несущую частоту зондирующих радиоимпульсов от одного края рабочего диапазона к другому, по полной разности фаз отраженных сигналов от каждого уровня раздела определяют уровни раздела жидкостей.
Для измерения относительного изменения уровней раздела жидкостей с повышенной точностью при постоянной несущей частоте зондирующих радиоимпульсов (например, в середине рабочего диапазона) в выделенных временных точках, соответствующих времени задержки отраженных радиоимпульсов от каждого уровня раздела, по разности фаз между начальным измерением и текущим определяется относительное изменение уровней раздела жидкостей.
Для выделения временных точек, соответствующих времени задержки отраженных радиоимпульсов от каждого уровня раздела жидкостей, перед циклом измерения уровней раздела жидкостей (или периодически, при измерении относительных изменений уровней раздела) производятся сканирование по времени задержки, поиск и запоминание местоположения максимумов амплитуд сигналов, вычисленных по квадратурным составляющим.
На фиг. 1 схематично показано устройство для осуществления предлагаемого способа; на фиг. 2 - временные диаграммы, объясняющие сущность способа: а - вид амплитуды просочившегося через циркулятор, отраженного от нескольких уровней раздела и от дна сосуда сигнала на выходах квадратурных фазовых детекторов; б - местоположение стробов АЦП (которые будут вырабатываться синхронизатором при измерении значений фазы), найденное после поиска максимумов амплитуд сигналов; в, г - соответственно изменение частоты излучения зондирующего сигнала во времени и изменение фазы принятых сигналов во времени, просочившегося через циркулятор отраженного от уровней раздела жидкостей и от дна сосуда, соответственно.
Устройство содержит дискретно управляемый СВЧ-генератор 1, выход которого через направленный ответвитель 2 соединен с первым входом импульсного модулятора 3, управляемого с первого выхода синхронизатора 4 через второй вход импульсного модулятора, выход которого через циркулятор 5 соединен с антенной 6, расположенной над контролируемыми поверхностями раздела разнородных жидкостей 7а, 7б,...7г и с малошумящим усилителем высокой частоты 8, выход которого соединен с первыми входами фазовых детекторов 9 и 10, второй вход первого фазового детектора 9 соединен со вторым выходом направленного ответвителя 2, а второй вход второго фазового детектора 10 соединен также со вторым выходом направленного ответвителя 2 через фазовращатель 11 на π/2. Выходы фазовых детекторов соединены с аналоговыми входами аналого-цифровых преобразователей АЦП1 12 и АЦП2 13, тактирующие входы которых соединены со вторым выходом синхронизатора 4. Цифровые выходы аналого-цифровых преобразователей соединены с вычислительным устройством 14, первый и второй выходы которого соединены с синхронизатором и дискретно управляемым СВЧ-генератором, соответственно.
Способ осуществляется следующим образом.
Несущая частота зондирующего радиоимпульсного сигнала задается дискретно управляемым СВЧ-генератором 1 в рабочем диапазоне частот от F0 до FK с дискретом ΔF:
Fk = F0 + k • ΔF, k = 0...K,
где k - номер излучаемой частоты, a K = (FK - F0)/ΔF - количество излучаемых частот в рабочем диапазоне.
Выходной радиоимпульсный сигнал, сформированный в импульсном модуляторе 3 под управлением синхронизатора 4, через циркулятор 5 поступает в антенну 6, излучается, а после зеркального отражения от контролируемых уровней раздела разнородных жидкостей 7а, 7б,...7в, а также от дна емкости 7г, принимается антенной 6 и через циркулятор 5 подается на малошумящий усилитель высокой частоты 8, на вход которого также поступает просочившийся через циркулятор 5 сигнал. На выходе малошумящего усилителя высокой частоты результирующий сигнал Uk(t) принимает вид
Figure 00000002

где Ai - радиолокационный множитель [8] от i-го уровня и дна или просочившегося сигнала в циркуляторе;
U0(t) - функция формы радиоимпульса излученного сигнала;
ti - время задержки отраженного радиоимпульса от i-го уровня;
tppt - полное время задержки в тракте направленный ответвитель 2, модулятор 3, циркулятор 5, малошумящий усилитель 6, фазовый детектор 9 или 10;
фq - начальная фаза дискретно управляемого СВЧ-генератора 1;
i - номер временной точки, соответствующий на фиг. 2 просочившемуся радиоимпульсу в циркуляторе - ц, отраженным видеосигналам от уровней раздела разнородных жидкостей - а, б,..., в и от дна сосуда - г.
Радиоимпульсы с выхода малошумящего усилителя высокой частоты поступают на первые входы фазовых детекторов 9 и 10. В качестве опорного сигнала на второй вход первого фазового детектора подается часть мощности дискретно управляемого СВЧ-генератора 1, подаваемого непосредственно с направленного ответвителя 2 - Ucm(t), а на второй вход второго фазового детектора - через фазовращатель 11 на π/2 - Usm(t), соответственно:
Figure 00000003

где Uоm - амплитуда опорного сигнала на выходе направленного ответвителя 2;
tg - время задержки в тракте направленный ответвитель 2 - фазовый детектор 9 или 10.
После произведения сигналов (1) на (2) в фазовых детекторах на их выходах выделяются квадратурные составляющие принятых сигналов Uck(t) и Usk(t), которые можно представить в виде
Figure 00000004

где Ui(t) = kd • Ai • Uот • U0(t) - огибающая отраженного сигнала от i-го уровня разделения;
kd - коэффициент преобразования фазового детектора;
Фd - фаза смещения квадратурного детектирования.
После преобразования квадратурных составляющих принятых сигналов (на аналого-цифровых преобразователях АЦП1 и АЦП2) в цифровую форму данные поступают в вычислительное устройство 14, в котором по значениям квадратурных составляющих вычисляются амплитуды сигналов Ampk(t) для k-й частоты дискретно управляемого СВЧ-генератора в соответствии с выражением
Figure 00000005

Для временного разделения отраженных сигналов от соседних уровней раздела жидкостей вычислительное устройство 14, управляя синхронизатором 4, при несущей частоте Fm зондирующего радиоимпульса, например, в середине рабочего диапазона, производит поиск и запоминание значений времени задержки tmaxi, соответствующих максимумам амплитуды сигнала Ampm(tmaxi), отраженного от i-го уровня раздела (см. фиг. 2а, б). Если длительность излученного радиоимпульса меньше чем 2ΔHmin/c, где ΔHmin - минимальное расстояние между двумя соседними уровнями раздела, с - скорость света, то происходит разделение соседних сигналов, сводя к минимуму взаимное влияние. Вышеописанная процедура позволяет производить вычисление и запоминание в вычислительном устройстве 14 значения фазы Фik каждого i-го сигнала для k-й частоты зондирования при сканировании по рабочему диапазону частот
Figure 00000006

где N - количество полных изменений фазы при изменении несущей частоты от F0 до Fk [9].
Для выбора шага перестройки несущей частоты необходимо выполнение условия 2π•ΔF•tmax < π/2, где tmax=tppt - tg + 2Hmax/c - максимальная задержка сигнала, соответствующая максимальному диапазону измеряемого уровня Hmax (при более чем двух измерениях фазы ее изменение будет не больше π), данное условие соответствует ΔF < c/8Hmax.
При изменении от меньшей частоты F0 к большей Fk с шагом ΔF значение N должно увеличиваться на единицу [9], если значение измеренной фазы на частоте Fk-1 больше, чем на частоте Fk, что позволяет проследить за суммарным изменением фазы каждого сигнала. На фиг. 2,г показано изменение фазы для просочившегося сигнала через циркулятор - ц, для отраженного сигнала от уровней раздела жидкостей - а, б,..., в и от дна сосуда - г при изменении частоты излучения, показанной на фиг. 2,в.
Как следует из выражения (5), изменение фазы ΔФi от i-го уровня при изменении частоты от F0 до Fk соответствует
ΔФi = ФiKi0 = 2π•(FK-F0)•(tppt-tg+ti).
Отсюда можно вывести выражение для оценки времени задержки отраженного радиоимпульса от i-го уровня раздела жидкости
Figure 00000007

Так как в выражении (6) присутствует время задержки в приемопередающем тракте
Figure 00000008
имеющей большую как температурную нестабильность, так и временную, то для ее исключения воспользуемся наличием просочившегося в циркуляторе сигнала, для чего из оценки уровня i-го уровня вычтем оценку уровня, соответствующего просочившемуся сигналу в циркуляторе [4] . Окончательно можно написать выражение уточненной оценки времени задержки отраженного радиоимпульса от уровня раздела жидкостей относительно циркулятора в виде
Figure 00000009

где ΔФcir - разность фаз просочившегося сигнала в циркуляторе при изменении частоты от F0 до Fk.
При измерении относительного изменения уровней находим разность фаз ΔФTi = ФTi0i между измеренной фазой в текущий момент времени ФTi и фазой в начале измерения Ф0i для каждого сигнала, отраженного от i-го уровня при излучении зондирующего сигнала с постоянной частотой Fm, например, в середине рабочего диапазона. Тогда можно записать выражения для относительного изменения времени задержки отраженного радиоимпульса от каждого i-го уровня от начала измерения до текущего в виде
Figure 00000010

где tapp0, tappt - время задержки в приемопередающем тракте вначале и при текущем измерении, соответственно, которые вследствие временной нестабильности могут не совпадать.
С учетом вышесказанного для исключения временной и температурной нестабильности выражение для относительного изменения времени задержки отраженного радиоимпульса от уровня раздела жидкости относительно задержки просочившегося в циркуляторе сигнала запишется в виде
Figure 00000011

где ΔФTcir - разность фаз между началом измерения и текущим измерением для просочившегося сигнала в циркуляторе.
Соответствующие [10] погрешности абсолютного измерения времени задержки отраженного радиоимпульса от i-го уровня раздела жидкостей (7) и измерения относительного изменения времени задержки отраженного радиоимпульса от i-го уровня (8) запишутся в виде
Figure 00000012

где δФ - погрешность измерения фазы.
Из выражения (5) следует, что
Figure 00000013

здесь Ф - измеряемая фаза сигнала; δU - погрешность измерения квадратурных составляющих сигнала; A - амплитуда сигнала.
Если отношение напряжений сигнал/шум больше 30 дБ, то основная погрешность определяется погрешностью аналого-цифрового преобразования, имеющей значение не более половины дискрета, и для 8-разрядного АЦП, равной 1/(2 • 28) [11], тогда ошибка измерения фазы δФ будет не более 2,8 • 10-3. Погрешность установки частоты дискретно управляемого СВЧ-генератора δF определяется схемотехникой его построения и для ФАПЧ с переменным коэффициентом деления и опорным кварцевым генератором (синтезатор частот) относительная погрешность установки частоты не более 10-5 [7].
Таким образом для измерителя уровней с рабочим диапазоном 4.0 - 4.5 ГГц общая погрешность измерителя времени задержки отраженного радиоимпульса от уровней раздела жидкостей не более 6 псек
Figure 00000014
а для измерителя относительных изменений времени задержки отраженного радиоимпульса от уровней раздела жидкостей не более
Figure 00000015

Таким образом, предложенный способ позволяет обеспечить более высокую точность измерения времени задержки отраженного радиоимпульса от уровней раздела жидкостей в сравнении с прототипом, что выполняет поставленную цель изобретения.
Литература
1. Коган И.М. Ближняя радиолокация. - М., Сов. радио, 1973.
2. Беннетт С. Л., Росс Дэк. Ф. Время-импульсные процессы и их применения. ТИИЭР, 1978, т. 66, N 3, с. 35-37.
3. Авторское свидетельство СССР N 1659730, кл. G 01 F 23/28, 1988.
4. Патент РФ N 2023989, кл. G 01 F 23/28, 1992.
5. Авторское свидетельство СССР N 1642250, кл. C 01 F 23/28, 1989.
6. Авторское свидетельство СССР N 1659733, кл. G 01 F 23/28, 1989.
7. Хоровиц П. , Хилл У. Искусство схемотехники. т. 3. - М., Мир, 1993, стр. 151.
8. Жуковский А.П., Оноприенко Е.И., Чижов В.И. Теоретические основы радиовысотометрии. - М., Сов. радио, 1979.
9. Супряга Н.П. Радиолокационные средства непрерывного излучения. - М., Военное издательство МО, 1974, стр. 26.
10. Бакулев П. А., Степин В.М. Методы и устройства селекции движущихся целей. - М., Радио и связь, 1986.
11. Марцинкявичюс А.К., Багданскис Э.К. Быстродействующие интегральные микросхемы ЦАП и АЦП и измерение их параметров. - М., Радио и связь, 1988.

Claims (4)

1. Бесконтактный способ измерения уровней раздела разнородных по электрофизическим свойствами жидкостей, включающий зондирование радиоимпульсными СВЧ-сигналами контролируемой среды, прием отраженных сигналов, измерение интервалов времени между зондирующими и отраженными сигналами, отличающийся тем, что производят сканирование по несущей частоте зондирующих радиоимпульсных сигналов от одного конца диапазона рабочих частот к другому с заданным дискретом, измеряют по квадратурным составляющим отраженных сигналов разность фаз между фазами отраженных сигналов в начале цикла сканирования и фазами в текущий момент сканирования в выделенные моменты времени, соответствующие времени задержки отраженных радиоимпульсных сигналов от каждого уровня раздела жидкостей относительно зондирующих сигналов, вычисляют в каждом цикле сканирования суммарные разности фаз между фазами отраженных сигналов в начале и конце цикла сканирования для каждого уровня раздела жидкостей и после окончания циклов сканирования по несущей частоте по вычисленным значениям разностей фаз определяют значения уровней жидкостей.
2. Бесконтактный способ измерения относительного изменения уровней раздела разнородных по электрофизическим свойствам жидкостей, включающий зондирование радиоимпульсными СВЧ-сигналами контролируемой среды, прием отраженных сигналов, измерение интервалов времени между зондирующими и отраженными сигналами, отличающийся тем, что измерение производят на фиксированной несущей частоте зондирующих радиоимпульсных сигналов в выделенных временных точках, соответствующих времени задержки отраженных радиоимпульсных сигналов от каждого уровня раздела, вычисляют разности фаз между фазами отраженных сигналов в начале измерения и фазами в текущий момент времени по квадратурным составляющим отраженных сигналов от каждого уровня раздела жидкостей относительно зондирующих сигналов и по разности фаз определяют относительное изменение уровней раздела жидкостей.
3. Бесконтактный способ по п.2, отличающийся тем, что периодически перед началом измерения производят поиск, определение и запоминание местоположения максимумов амплитуд отраженных сигналов.
4. Бесконтактный способ по п.2 или 3, отличающийся тем, что фиксированная несущая частота зондирующих радиоимпульсных сигналов находится в середине рабочего диапазона частот.
RU98119622A 1998-10-30 1998-10-30 Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью RU2152595C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98119622A RU2152595C1 (ru) 1998-10-30 1998-10-30 Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98119622A RU2152595C1 (ru) 1998-10-30 1998-10-30 Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью

Publications (1)

Publication Number Publication Date
RU2152595C1 true RU2152595C1 (ru) 2000-07-10

Family

ID=20211770

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98119622A RU2152595C1 (ru) 1998-10-30 1998-10-30 Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью

Country Status (1)

Country Link
RU (1) RU2152595C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA005504B1 (ru) * 2001-02-14 2005-02-24 Эндресс + Хаузер Гмбх + Ко. Кг Уровнемер, работающий на микроволнах
EP1707982A1 (en) * 2005-03-31 2006-10-04 AGELLIS Group AB Method for analysing a substance in a container
EP1707983A1 (en) * 2005-03-31 2006-10-04 AGELLIS Group AB Method and device for contactless level and interface detection
RU2504739C1 (ru) * 2012-06-08 2014-01-20 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для определения уровня жидкости в емкости
CN106871993A (zh) * 2017-04-14 2017-06-20 西安翼飞软件科技有限公司 外置式纵剖面探测波液面含水探测仪
RU2649665C1 (ru) * 2017-03-03 2018-04-04 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновый уровнемер

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КОГАН И.М. Ближняя радиолокация. - М.: Советское радио, 1973, с.35 - 36. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA005504B1 (ru) * 2001-02-14 2005-02-24 Эндресс + Хаузер Гмбх + Ко. Кг Уровнемер, работающий на микроволнах
EP1707982A1 (en) * 2005-03-31 2006-10-04 AGELLIS Group AB Method for analysing a substance in a container
EP1707983A1 (en) * 2005-03-31 2006-10-04 AGELLIS Group AB Method and device for contactless level and interface detection
WO2006103200A1 (en) * 2005-03-31 2006-10-05 Agellis Group Ab Method and device for contactless level and interface detection
WO2006103201A1 (en) * 2005-03-31 2006-10-05 Agellis Group Ab Method for analysing a substance in a container
US7733267B2 (en) 2005-03-31 2010-06-08 Agellis Group Ab Method for analysing a substance in a container
US8044843B2 (en) 2005-03-31 2011-10-25 Agellis Group Ab Method and device for contactless level and interface detection
RU2504739C1 (ru) * 2012-06-08 2014-01-20 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для определения уровня жидкости в емкости
RU2649665C1 (ru) * 2017-03-03 2018-04-04 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновый уровнемер
CN106871993A (zh) * 2017-04-14 2017-06-20 西安翼飞软件科技有限公司 外置式纵剖面探测波液面含水探测仪
CN106871993B (zh) * 2017-04-14 2023-05-19 西安翼飞软件科技有限公司 外置式纵剖面探测波液面含水探测仪

Similar Documents

Publication Publication Date Title
US5495252A (en) Near range obstacle detection and ranging aid
JP3784823B1 (ja) 距離測定装置、距離測定方法および距離測定プログラム
US7639177B2 (en) Method and device for correcting non-ideal intermediate-frequency signals in distance sensing device according to the FMCW principle
US5134411A (en) Near range obstacle detection and ranging aid
Woods et al. A high accuracy microwave ranging system for industrial applications
US5023572A (en) Voltage-controlled oscillator with rapid tuning loop and method for tuning same
US5115242A (en) In-furnace slag level measuring apparatus
EP3029434B1 (en) Radar level gauging
US20070192391A1 (en) Direct digital synthesis radar timing system
US8207762B2 (en) Digital time base generator and method for providing a first clock signal and a second clock signal
US4599618A (en) Nearest return tracking in an FMCW system
US9031811B2 (en) System and method for pulse-echo ranging
JP2007052035A (ja) レベル計測装置
RU2152595C1 (ru) Бесконтактный импульсно-фазовый способ измерения уровня раздела разнородных жидкостей, а также относительного изменения уровня с повышенной точностью
CN106772349B (zh) 一种测距、测速方法及系统
RU2410650C2 (ru) Способ измерения уровня материала в резервуаре
RU2188399C2 (ru) Импульсно-фазовый измеритель толщины слоев разнородных жидкостей, а также их относительного изменения с повышенной точностью
JP4831810B2 (ja) 定在波レーダおよび距離測定方法
RU2504740C1 (ru) Способ измерения уровня жидкости в емкости
RU2423723C1 (ru) Способ измерения расстояния радиодальномером с частотной модуляцией зондирующих радиоволн (варианты)
RU2431155C1 (ru) Способ измерения расстояния радиодальномером с частотной модуляцией зондирующих радиоволн
US2928085A (en) Radio altimeter systems
Jahagirdar A high dynamic range miniature DDS-based FMCW radar
RU2695799C1 (ru) Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации
RU2706453C1 (ru) Автоподстроечный способ измерения малого значения уровня вещества