RU2143756C1 - Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят - Google Patents

Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят Download PDF

Info

Publication number
RU2143756C1
RU2143756C1 RU97114503A RU97114503A RU2143756C1 RU 2143756 C1 RU2143756 C1 RU 2143756C1 RU 97114503 A RU97114503 A RU 97114503A RU 97114503 A RU97114503 A RU 97114503A RU 2143756 C1 RU2143756 C1 RU 2143756C1
Authority
RU
Russia
Prior art keywords
iodine
gases
gas
capture
purification
Prior art date
Application number
RU97114503A
Other languages
English (en)
Other versions
RU97114503A (ru
Inventor
В.К. Исупов
Р.И. Любцев
Б.Я. Галкин
А.Б. Колядин
В.К. Веселов
В.В. Гаврилов
Original Assignee
Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина" filed Critical Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина"
Priority to RU97114503A priority Critical patent/RU2143756C1/ru
Publication of RU97114503A publication Critical patent/RU97114503A/ru
Application granted granted Critical
Publication of RU2143756C1 publication Critical patent/RU2143756C1/ru

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к способам очистки от радиоактивных и вредных химических веществ газовых выбросов, образующихся при переработке отработавшего ядерного топлива. Способ заключается в такой последовательности улавливания отдельных-вредных компонентов, при которой улавливание каждого вредного компонента является подготовительной операцией для выделения последующего. При этом используются режимы и реагенты, позволяющие получать высокие коэффициенты очистки по всем примесным компонентам: аэрозолям, нитрозным газам, йоду-129, радиоуглероду, радиокриптону, ксенону и др. Заявленный способ носит комплексный характер, обеспечивает минимальный объем вторичных отходов в химической форме, удобной для длительного хранения, захоронения или возможного использования. 2 з.п.ф-лы, 2 ил.

Description

Изобретение относится к способам очистки от радиоактивных и вредных химических веществ (ВХВ), содержащихся в газовых выбросах, образующихся при переработке отработавшего ядерного топлива (ОЯТ). ОЯТ после измельчения на куски размером 5-10 см загружают в аппарат-растворитель, где его растворяют в горячей азотной кислоте. При этом образуется сложного состава парогазовая фаза, содержащая помимо ингредиентов воздуха, пары воды, азотной кислоты, оксиды азота, тритий, йод, радиоуглерод, радиоактивные благородные газы. Многие из них находятся в различных валентных формах и химических состояниях. При выносе этой смеси из растворителя газом-носителем образуются твердые и жидкие аэрозоли, которые могут содержать весь спектр вредных компонентов, включая уран и плутоний. Необходима тщательная очистка газовых выбросов. Чтобы удовлетворить требованиям, предъявляемым НРБ-86 и существующими санитарными правилами, необходимо извлечь из выбрасываемых в атмосферу газов все вредные компоненты с максимальной степенью очистки. Наиболее полно такие требования изложены в Технико-экономическом обосновании завода РТ-2 (ТЭИ завода РТ-2, инв. N 6156, 1994 г.). В данном документе дается обоснование необходимой степени очистки газовых выбросов от аэрозолей, йода-129, радиокриптона, радиоуглерода, трития, других радионуклидов, а также от нитрозныx газов других ВХВ.
Наиболее близким к заявляемому является способ, описанный в патенте N 2711374 ФРГ, МКИ G 21 F 9/02 от 21.09.78 г. Согласно этому способу предлагается смешивать отходящие из растворителя газы с газом-носителем в химической форме, близкой к одному из радиоактивных веществ, с последующим их разделением. Задача очистки газовых выбросов при общей весьма высокой сложности процесса (введение газа-носителя оксида азота, образующегося в результате диспропорционирования высших оксидов азота) сужается здесь до улавливания нитрозных газов, йода-129 и криптона-85. Принципиальная схема очистки по прототипу приведена на фиг. 1.
Согласно способу-прототипу из реактора-растворителя 1 газы, содержащие пары воды, азот, оксиды азота, пары азотной кислоты, ксенон, криптон и йод, направляются в конденсатор 2. Здесь задерживается часть паров, оксидов азота и йода. Далее газы следуют в абсорбционную колонну 3 и промываются азотной кислотой. Покидающие абсорбционную колонну 3 газы следуют через конденсатор 4, где освобождаются от высших оксидов азота, которые через проводник 5 возвращаются в начало ввода газа 6. Из конденсатора 4 газы попадают в разделительную колонну 7, где разделяются путем дистилляции на две фракции, одна из которых содержит радиоактивные вещества с газом-носителем, а другая фракция, не содержащая их, через дополнительный адсорбер 8 выбрасывается в дымовую трубу 9. Первая фракция подается в головную часть разделительной колонны 10. Из этой колонны смесь радиоактивных веществ и газа-носителя через проводник 11 подается в основание колонны 12 двойной химической переработки. Ксенон, отделенный в основании колонны 10, сбрасывается. Остающиеся в газе оксиды азота после колонны 12 собираются в конденсаторе 16, а образующаяся азотная кислота может быть направлена снова в растворитель 1. Колонна 15 и конденсатор 20, связанные в одну систему с колоннами 12-13, отстойником 14, служат для обработки оксидов азота в азотную кислоту, сюда вводится, а именно в головную часть колонны 13, стехиометрическое количество кислорода.
Отстойный продукт конденсатора 2 и абсорбционной колонны 3 подвергают десорбции в 17 и 18, а в аппарате 19 газ освобождают от йода.
Основные недостатки описанного способа заключаются в:
- большой сложности процесса;
- отсутствии на первых этапах очистки от аэрозолей и пыли, что приводит к загрязнению всей системы и образованию вторичных отходов, жидких и твердых;
- необходимости введения газа-носителя - монооксида азота, который согласно описанию образуется в результате диспропорционирования высших окислов в конце схемы. Это означает, что оксидов азота через всю систему очистки проходит достаточно много, в противном случае необходим дополнительный генератор оксидов азота;
- отсутствии очистки от радиоуглерода;
- необходимости точного контроля и дозировки вводимых сторонних реагентов, например, кислорода;
- необходимости строгого соблюдения режима работы всех аппаратов, которых даже на принципиальной схеме достаточно много (одних конденсаторов для выделения из газа оксидов азота приведено в количестве четырех). В схеме не описан способ выделения йода-129 из азотной кислоты, что предполагает использование твердого сорбента, по-видимому, на основе серебра.
Задачей предлагаемого изобретения является:
- упрощение и удешевление процесса с одновременным повышением надежности схемы очистки газовых выбросов от вредных компонентов;
- улавливание всего спектра вредных составляющих, а также потенциально полезных ингредиентов, например, ксенона;
- уменьшение объемов твердых и жидких вторичных отходов газоочистки с максимальным возвращением в цикл улавливаемых технологических продуктов, например, оксидов азота - азотной кислоты;
- комплексный подход к системе газоочистки с учетом специфики поведения каждого компонента с возможностью маневрирования при выделении и последующем обращении с каждым отдельным вредным ингредиентом.
Суть предлагаемой комплексной системы газоочистки заключается в следующем: на пути следования выбросных газов создаются несколько ступеней для улавливания аэрозолей, оксидов азота, йода, трития, углерода-14, радиокриптона и ксенона.
Способ поясняется схемой, изображенной на фиг. 2.
В реактор-растворитель 1 подается воздух, обогащенный кислородом, для облегчения выноса элементарного йода в систему улавливания; окисления NO в NO2.
Воздух интенсивно подается в момент пикового выделения оксидов азота и йода, выделение которых коррелирует между собой. Газовый поток после очистки от аэрозолей, охлаждения и конденсации паров воды, кислоты в дефлегматоре и на аппаратах аэрозольной очистки 2, 3, 4, 5 поступает на первую абсорбционную колонну 6. Колонна орошается слабой азотной кислотой с добавкой 2-5 мас.% пероксида водорода. Пероксид водорода в данных условиях служит для окисления образующейся в результате растворения оксидов азота азотистой кислоты в азотную, тем самым препятствует вторичному образованию оксидов азота по реакции:
2HNO2 ---> H2О + NO2 + NO.
Реакция протекает мгновенно. В то же время пероксид окисляет летучую форму йода (J2) в нелетучий йодат (JO3-).
После насыщения поглотителя до 4-6 м/л азотная кислота с йодной выводится в отдельный поток и поступает на переработку с целью их разделения в узел 11. Выделение йода осуществляется либо отдувкой воздухом при температуре 70-80oC в присутствии 2 мас.% пероксида водорода, либо с использованием метода экстракции органическим растворителем, например, бензолом или РЭД-4 в присутствии восстановителя, например, гидразина. Выделяемый йод поступает на переработку с целью получения твердой формы отходов, удобной для захоронения или долговременного хранения, а азотная кислота после специальной подготовки используется в технологии.
Газовый поток после очистки от основной части оксидов азота и йода содержит остаточные количества указанных веществ, весь углерод-14 в форме CO2, радиокриптон и стабильный ксенон. Он поступает на очистку во вторую колонну 7, содержащую 2-4 М раствор гидроксида натрия с добавкой 2-5 мас.% восстановителя, например, мочевины. Во второй колонне 7 происходит доулавливание оксидов азота и йода, улавливание радиоуглерода. Промывной раствор этой колонны работает до остаточной концентрации по NaOH, равной 0,2-0,5 М/л, после этого поступает на переработку с целью выделения в твердой фазе углерода-14 (BaCO3 или CaCO3) и йода на узел 12. После удаления из раствора углерода и йода он подкрепляется концентрированным раствором NaOH до 2-4 М/л и вновь поступает в цикл очистки газовых выбросов. Таким образом, абсорбционная колонна 7, выполняя основную роль по улавливанию радиоуглерода, является стерегущей для йода и нитрозных газов. В случае аварийной ситуации на головных ступенях системы газоочистки она не дает выйти йоду и оксидам азота в вентиляцию.
Газовый поток после промывки в колонне 7 поступает на очистку от радиокриптона 9 и стабильного ксенона 8 и после этого выбрасывается в дымовую трубу 10. Основная подготовка газа к улавливанию РБГ заключается в осушке газа. Используется либо метод абсорбции на жидких поглотителях (фреонах), либо метод адсорбции на твердых сорбентах (цеолитах). При этом в процессе улавливания РБГ осуществляется дополнительная очистка от йода, оксидов азота, радиоуглерода, которые также можно вывести по мере накопления в отдельные фракции и присоединить к ранее выделенным.
Таким образом, преимущества предлагаемого способа заключаются в следующем:
- в очистке газовых выбросов подход комплексный, т.е. улавливание каждого компонента служит подготовкой к выделению последующего;
- нет необходимости дополнительно вводить газ носитель-оксид азота, который необходимо специально получать;
- каждый вредный компонент выводится в отдельную фракцию, обеспечивающую удобство и простоту в дальнейшем обращении с ним с целью захоронения или использования;
- в процессе используются доступные дешевые реагенты, осуществлен отказ от дефицитного серебра с сохранением высокой степени очистки газа от йода;
- вследствиe многобарьерности очистки повышается степень очистки газовых выбросов, уменьшается вероятность аварийных выбросов вредных веществ в атмосферу;
- и, наконец, схема очистки достаточно проста в исполнении, контроле и управлении.
Пример 1. 0,5 кг нарубленного на куски длиной ~ 5 см отработавшего ядерного топлива ВВЭР-1000 с выгоранием ~ 40 МBт/сут•т урана загружали в аппарат-растворитель общим объемом 10 л. После проверки герметичности всей системы в растворитель подавали ~ 3 л 8 М азотной кислоты и медленно поднимали температуру раствора до 100oC. В системе газоочистки были расположены последовательно дефлегматор, аэрозольный фильтр, колонна-абсорбер с HNO3+H2O2 (2-5 мас. %), абсорбционная колонна с NaOH+(NH2)2CO (~ 0,3 М/л) и абсорбционный узел для улавливания ксенона и криптона методом селективной абсорбции на фреоне-13. За кинетикой выделения газа следили с помощью расходомеров, а за скоростью растворения ОЯТ - по содержанию в отходящем газе криптона-85.
В процессе растворения из аппарата-растворителя в систему газоочистки поступал парогазовый поток, состоящий из оксидов азота (до 70% в максимуме), паров воды, азотной кислоты, компонентов воздуха, углекислого газа до 0,1 об. %, йода-129 (со средней концентрацией ~ 100 мг/м, ксенона (в максимуме ~ 0,1 об. %), криптона (85Kr) (в максимуме ~ 0,01 об.%). Основное количество выделяющихся при растворении оксидов азота, йода, ксенона и криптона наблюдалось в течение 40-50 мин после начала нагревания раствора. В этот период в растворитель подавали дополнительно ток кислорода с расходом ~ 100 л в 1 ч. Суммарный расход газа при этом на выходе из установки был равен ~ 1 м3/ч. При таком режиме растворения из азотно-кислого раствора удалялось в газовую фазу 98% йода от его исходного содержания в ОЯТ.
Оксиды азота и йод улавливались в абсорбционной колонне, орошаемой водой, содержащей 2 мас.% пероксида водорода. Режим работы колонны обеспечивал соотношение газ/жидкость 250: 1, при комнатной температуре. Поглощение оксидов азота осуществлялось на 99% и около 99% йода, поступающих в головную часть колонны. Оставшиеся количества этих компонентов поступали в колонну со щелочным поглотителем (4 М NaOH + 0,3 м/л (NH2)2CO, где доулавливались, образуя нитрат натрия и йодид натрия. Здесь же улавливался радиоуглерод в химической форме карбонатов натрия.
После щелочной промывки отходящий газ поступал на осушку и очистку от жидких аэрозолей и далее направлялся в систему селективной абсорбции радиокриптона и ксенона фреоном-13. При этом на первой абсорбциионной колонне этого узла выделяли стабильный ксенон, а на второй - осуществляли улавливание криптона (85Kr).
Получаемые вторичные жидкие отходы далее перерабатывали с целью выделения вредных составляющих в отдельные фракции для длительного хранения или использования.
Регенерированная азотная кислота, содержащая йодную, подавалась на отдельную тарельчатую колонну, где методом противотока воздухом проводили отдувку йода. При режиме работы колонны: расходное соотношение газ/жидкость не ниже 100, температура раствора, равная 70oC, содержание пероксида водорода не ниже 2 мас.%, йод отдувался на 98%. Переходящий в газовую фазу йод улавливали в 2-4 М/л растворе NaOH, который далее направляли на переработку с целью получения твердой композиции CuJ + Cu, удобной для длительного контролируемого хранения.
Очищенная азотная кислота направлялась на специальную подготовку и повторно использовалась в технологии переработки ОЯТ.
Из щелочного поглотителя 2-й колонны после выработки его до остаточной концентрации 0,2-0,5 М/л NaOH выделяли углерод-14 в химической форме BaCO3. Выход ~ 99%. Также очищали этот раствор от накопившегося в нем йода-129 (при многократном использовании), выделяя его либо в форме элементарного йода, либо в виде твердых малорастворимых соединений.
Выделенные на конечной стадии очистки ксенон и криптон разделяли, чистили от компонентов воздуха (N2, O2,) и компримировали в баллоны под давлением.
В проведенном таким образом эксперименте по очистке парогазовых выбросов из растворителя были достигнуты следующие коэффициенты очистки:
по йоду-129 > 102,
по углероду-14 > 20,
по аэрозолям > 107,
по криптону-85 > 102,
по тритию - 102,
по оксидам азота < 7•102.
Пример 2. На экспериментальной установке по растворению ОЯТ, состоящей из реактора-растворителя общим объемом 25 л с системами обеспечения реагентами, воздухом и т.д., газового стенда, включающего дефлегматор, аэрозольные фильтры, абсорбционные колонны: 1-я - для улавливания оксидов азота и йода; 2-я - для улавливания радиоуглерода, абсорбционные колонны для улавливания ксенона и радиокриптона с системами контроля, анализа и управления и системой захолаживания их жидким азотом, растворяли четыре партии ОЯТ массой 7,1 кг (0,5; 2,7; 1,9; 2,0 кг). Нарубленное на куски топливо загружали в реактор в кислоту HNO - 8 М/л, объемом 15 л, герметизировали и поднимали температуру раствора до кипения. Процесс растворения, контроль и управление проводили аналогично. Контроль за процессом осуществляли в течение растворения по отбираемым из аппаратов пробам, по выходу в газовую фазу криптона-85 (непрерывно), по пробам, отобранным из всех аппаратов газоочистки после окончания растворения. Анализ проводили по всем летучим и газообразным компонентам. Выделение ксенона и радиокриптона проводили с помощью адсорбционного метода, в данном случае с использованием активированного угля марки СКТ-2Б. Разогревания угля за счет адсорбции оксидов азота не наблюдалось, содержание их перед адсорбционными колоннами было на пределе чувствительности определения хроматографическим методом.
Выделение йода из образующейся в колонне 1 регенерированной азотной кислоты осуществляли методом экстракции в РЭД-4 после восстановления йодной кислоты гидразином. В органический растворитель извлекали > 99% йода.
В проведенном эксперименте были достигнуты следующие коэффициенты очистки:
аэрозоли > 108,
йод-129 > 102,
углерод-14 - 20,
криптон-85 ~ 103,
оксиды азота ~ 103,

Claims (3)

1. Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении ОЯТ, включающий улавливание аэрозолей и пыли, нитрозных газов, радиойода и радиоактивных благородных газов (РБГ), отличающийся тем, что очистку проводят в последовательности, при которой улавливание каждого компонента является подготовительной операцией для выделения последующего, при этом после улавливания аэрозолей и пыли проводят совместное улавливание нитрозных газов и йода в слабокислом поглотителе, содержащем добавки несолеобразующего окислителя в количестве 2 - 5 мас.%, например, пероксида водорода, после чего осуществляют улавливание радиоуглерода с доочисткой газового потока от нитрозных газов и йода щелочным поглотителем, содержащим добавки несолеобразующего восстановителя в количестве 2 - 5 мас.%, например, мочевину или гидроксинамин, а улавливание РБГ, в частности, ксенона и криптона с окончательной очисткой от всех вредных примесей проводят методом селективной абсорбции либо адсорбции на твердых сорбентах.
2. Способ по п.1, отличающийся тем, что над поверхностью раствора ОЯТ в момент пикового выделения нитрозных газов и йода дополнительно пропускают поток газа-поглотителя, максимально насыщенного кислородом.
3. Способ по п.1, отличающийся тем, что фракционирование образующихся в процессе газоочистки вторичных отходов в виде азотной и йодной кислот проводят методом отдувки йода при 70 - 80oC и при добавке слабого восстановителя, например пероксида водорода, в количестве 1 - 2 мас.% либо экстракцией элементарного йода после восстановления йодноватой кислоты, например, гидразином, а из слабощелочного раствора с остаточной концентрацией 0,2 - 0,5 М/л NaOH выделяют радиоуглерод и радиойод в форме твердых химических соединений.
RU97114503A 1997-08-27 1997-08-27 Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят RU2143756C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97114503A RU2143756C1 (ru) 1997-08-27 1997-08-27 Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97114503A RU2143756C1 (ru) 1997-08-27 1997-08-27 Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят

Publications (2)

Publication Number Publication Date
RU97114503A RU97114503A (ru) 1999-06-20
RU2143756C1 true RU2143756C1 (ru) 1999-12-27

Family

ID=20196687

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97114503A RU2143756C1 (ru) 1997-08-27 1997-08-27 Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят

Country Status (1)

Country Link
RU (1) RU2143756C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2530058C2 (ru) * 2009-07-20 2014-10-10 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Способ регенерации твердого йодного фильтра
RU2664127C1 (ru) * 2017-08-24 2018-08-15 Федеральное Государственное Унитарное Предприятие "Горно - Химический Комбинат" (Фгуп "Гхк") Способ регенерации азотной кислоты из тритийсодержащего газового потока

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2530058C2 (ru) * 2009-07-20 2014-10-10 Коммиссариат А Л' Энержи Атомик Э Оз Энержи Альтернатив Способ регенерации твердого йодного фильтра
RU2664127C1 (ru) * 2017-08-24 2018-08-15 Федеральное Государственное Унитарное Предприятие "Горно - Химический Комбинат" (Фгуп "Гхк") Способ регенерации азотной кислоты из тритийсодержащего газового потока

Similar Documents

Publication Publication Date Title
US4447353A (en) Method for treating a nuclear process off-gas stream
US4206073A (en) Process for separating volatile, radioactive substances obtained in the reprocessing of nuclear fuel
RU2143756C1 (ru) Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят
US4562000A (en) Process for the separation of krypton from a radioactive waste gas mixture and arrangement for implementing the process
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
WO1981000413A1 (en) Method for treating a nuclear process off-gas stream
JPH073472B2 (ja) 使用済溶媒の処理法
US5417942A (en) Process for trapping gaseous ruthenium on polyvinyl pyridine, more particularly usable for recovering radioactive ruthenium from irradiated nuclear fuels
GB2098974A (en) Iodine removal from a gas phase
RU97114503A (ru) Способ фракционной очистки газов от вредных химических и радиоактивных веществ, образующихся при растворении оят
RU2664127C1 (ru) Способ регенерации азотной кислоты из тритийсодержащего газового потока
US3615267A (en) Separation of neptunium from uranium hexafluoride containing the same
JP3145889B2 (ja) 超臨界流体を抽出媒体とするウラン及び希土類元素の逐次分離法
RU2716828C1 (ru) Способ выделения молибдена-99 из топлива растворного реактора и устройство для его осуществления
JPH0871368A (ja) 排ガス中ヨウ素の除去方法
GB1602648A (en) Process for the purification of gases containing radioactive substances
JPH0817910B2 (ja) 排ガス処理装置
Voskresenskaya et al. Ruthenium Capture from the Gas Phase during Reprocessing of Spent Uranium-Plutonium Nitride Fuel from Fast Reactors
JPS6348572B2 (ru)
JPH0324499A (ja) 放射性廃ガス中ルテニウムの除去方法
JPS5853760B2 (ja) トリチウム水蒸気の除去方法
Bower et al. Control of fission product activity during short-cooled fuel processing connected with the ICPP RaLa process
JPH05172993A (ja) ルテニウム,テクネチウム揮発の抑制方法
JP2000266891A (ja) ウラン脱硝工程オフガス中窒素酸化物のリサイクル方法
Hanson et al. Design of off-gas cleaning systems for high-level waste vitrification

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110828