RU2138661C1 - Газотурбинный двигатель, работающий на криогенном топливе - Google Patents

Газотурбинный двигатель, работающий на криогенном топливе Download PDF

Info

Publication number
RU2138661C1
RU2138661C1 RU96110335A RU96110335A RU2138661C1 RU 2138661 C1 RU2138661 C1 RU 2138661C1 RU 96110335 A RU96110335 A RU 96110335A RU 96110335 A RU96110335 A RU 96110335A RU 2138661 C1 RU2138661 C1 RU 2138661C1
Authority
RU
Russia
Prior art keywords
gasifier
evaporation chamber
heat exchanger
chamber
flame tube
Prior art date
Application number
RU96110335A
Other languages
English (en)
Other versions
RU96110335A (ru
Inventor
М.Л. Кузменко
А.А. Снитко
В.В. Токарев
Ю.Е. Кириевский
М.С. Хрящиков
Original Assignee
Акционерное общество "Авиадвигатель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Авиадвигатель" filed Critical Акционерное общество "Авиадвигатель"
Priority to RU96110335A priority Critical patent/RU2138661C1/ru
Publication of RU96110335A publication Critical patent/RU96110335A/ru
Application granted granted Critical
Publication of RU2138661C1 publication Critical patent/RU2138661C1/ru

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Газотурбинный двигатель, работающий на криогенном топливе, содержит камеру сгорания, выполненную по меньшей мере из одной жаровой трубы с лопаточным завихрителем, и трубчатый теплообменник-газификатор. В камере сгорания жаровая труба содержит испарительную камеру, которая образована двумя концентрично расположенными стенками жаровой трубы, скрепленными на выходе с днищем, а на выходе - с лопаточным завихрителем. Вдоль трубчатого теплообменника-газификатора выполнены распыливающие отверстия. Лопатки завихрителя выполнены полыми. Испарительная камера сообщается с внутренней полостью жаровой трубы через полые лопатки завихрителя. Вход теплообменника-газификатора в испарительную камеру расположен на выходе жаровой трубы. Испарительная камера содержит дополнительную поперечную перегородку с отверстиями. Внутренняя стенка жаровой трубы содержит ребра со стороны испарительной камеры. Обеспечиваются высокая надежность и ресурс двигателя за счет улучшения тепловой эффективности криогенного топлива при его испарении и газификации, а также охлаждение стенок камеры сгорания и воздушно-газового тракта, преимущественно лопаток турбины. 1 з.п.ф-лы, 4 ил.

Description

Изобретение относится к газотурбинным двигателям, использующим криогенное топливо: сжиженный природный газ или жидкий водород.
Известен газотурбинный двигатель НК-89 с системой подачи сжиженного природного газа и теплообменником- газификатором, установленным за турбиной, в котором сжиженный природный газ превращается из жидкого в газообразное состояние и в таком виде подается в камеру сгорания. В камере сгорания установлены керосиновые и газовые форсунки [1]. Теплообменник-газификатор расположен за турбиной двигателя. Такое расположение теплообменника-газификатора уменьшает расходное сечение газового тракта и увеличивает потери при работе двигателя. Кроме того, такая конструкция не позволяет использовать хладоресурс криогенного топлива для охлаждения стенок жаровых труб камеры сгорания и воздушно-газового тракта, преимущественно лопаток турбины.
Известен также воздушно- реактивный двигатель, содержащий систему подачи криогенного топлива с теплообменником в виде ряда труб, плотно навитых на охлаждаемую камеру сгорания [2].
Данная система предназначена в основном для прямоточных воздушно-реактивных двигателей, использующих хладоресурс топлива, в частности, водорода, метана, преимущественно для охлаждения наружных стенок камеры сгорания, и не предназначена для газотурбинных авиационных двигателей и наземных газовых турбин.
Наиболее близким к заявляемому является турбореактивный двигатель с теплообменником-газификатором, работающим на жидком водороде [3]. В теплообменнике, расположенном вокруг реактивного сопла и форсажной камеры сгорания, жидкий водород газифицируется и подается затем в турбину. После расширения в турбине газообразный водород по трубопроводам подается к коллекторам и далее через форсунки - в камеру сгорания двигателя. Двигатель такого типа относится к "паровоэдушному".
Недостатком известной конструкции является загромождение теплообменником расходного сечения наружного контура двигателя и увеличение потерь при работе двигателя, что снижает ресурс и надежность работы двигателя.
Данная конструкция не позволяет эффективно использовать хладоресурс криогенного топлива при его расширении и газификации для охлаждения стенок камеры сгорания и воздушно-газового тракта, преимущественно лопаток турбины.
Техническая задача, на решение которой направлено данное изобретение, заключается в повышении надежности и ресурса двигателя за счет улучшения тепловой эффективности криогенного топлива при его испарении и газификации, а также охлаждения стенок камеры сгорания и воздушно-газового тракта, преимущественно лопаток турбины.
Сущность изобретения заключается в том, что в газотурбинном двигателе, работающем на криогенном топливе, содержащем камеру сгорания, выполненную по меньшей мере из одной жаровой трубы с лопаточным завихрителем, и трубчатый теплообменник-газификатор, согласно изобретению в камере сгорания жаровой трубы содержит дополнительно испарительную камеру, а теплообменник-газификатор размещен в испарительной камере, которая образована двумя концентрично расположенными стенками жаровой трубы, скрепленными на выходе с днищем, а на входе - с лопаточным завихрителем, при этом вдоль трубчатого теплообменника-газификатора выполнены распыливающие отверстия, лопатки завихрителя выполнены полыми, а испарительная камера сообщается с внутренней полостью жаровой трубы через полые лопатки завихрителя, причем вход теплообменника-газификатора в испарительную камеру расположен на выходе жаровой трубы.
Кроме того, испарительная камера содержит дополнительную поперечную перегородку с отверстиями, а внутренняя стенка жаровой трубы-ребра - со стороны испарительной камеры. Предлагаемая конструкция двигателя может быть выполнена с индивидуальной кольцевой или с трубчато-кольцевыми жаровыми трубами в камере сгорания. При этом камера сгорания с трубчато-кольцевыми жаровыми трубами представляет собой гибридную камеру сгорания с индивидуальной зоной горения в отдельных жаровых трубах и зоной турбулентного смешивания в общем кольцевом газосборнике.
Выполнение жаровой трубы камеры сгорания с испарительной камерой, а теплообменника-газификатора непосредственно в испарительной камере жаровой трубы позволяет улучшить эффективность двигателя, увеличить его тягу и снизить расход топлива за счет улучшения тепловой эффективности криогенного топлива при его испарении и газификации непосредственно в испарительной камере.
Улучшение эффективности топлива достигается также за счет направления большего расхода воздуха для организации процесса горения, т.к. охлаждение стенок жаровых труб происходит за счет паров криогенного топлива в испарительной камере. Повышенная температура газов в камере сгорания обеспечивается за счет комбинированного охлаждения стенок жаровых труб парами криогенного топлива и воздухом, подаваемым компрессором в камеру сгорания.
При размещении хладагента непосредственно в жаровых трубах камеры сгорания осуществляется эффективное охлаждение воздушно-газового тракта, преимущественно сопловых и рабочих лопаток турбины. Концентрично расположенные стенки жаровой трубы скреплены на выходе с днищем, а на входе - с лопаточным завихрителем, образуя испарительную камеру, в которой размещен теплообменник-газификатор. Теплообменник - газификатор с распыливающими отверстиями выполняет новую функцию, а именно распылителя криогенного топлива. Выполнение лопаток завихрителя полыми позволяет подавать газообразное топливо в полое центральное тело, охватываемого лопатками завихрителя, а далее через перфорированную стенку центрального тела соединять испарительную камеру жаровой трубы с внутренней полостью, т.е. полостью горения жаровой трубы. Такая конструктивная особенность обеспечивает соединение полого центрального тела через втулку с керосиновой форсункой, которая является частью системы запуска и аварийной системы при работе двигателя на авиационном керосине и повышает надежность работы камеры сгорания.
Расположение входа теплообменника-газификатора в испарительную камеру на выходе жаровой трубы обеспечивает направленное течение паров криогенного топлива к фронтовому устройству и газовой форсунке в виде центрального тела, т. е. против течения газового потока в жаровой трубе, что снижает потери давления паров криогенного топлива в испарительной камере, а также предотвращает испарение топлива в газовых форсунках и на стенках жаровых труб, обращенных к полости горения.
Теплообменник-газификатор располагается в зоне наибольших температурных градиентов и повышенного теплоотвода в стенках жаровой трубы, что повышает тепловую эффективность криогенного топлива при его испарении и газификации. Кроме того, такое расположение уменьшает время перехода (3-5 с) от системы запуска на керосиновых форсунках к системе работы на криогенном топливе, а также обеспечивает переход на аварийную систему работы на керосиновых форсунках при отключении основной системы подачи криогенного топлива.
Выполнение дополнительной перегородки в испарительной камере позволяет образовать дополнительную предкамеру, что обеспечивает возможность использования промежуточного теплообменника-газификатора, например, расположенного за турбиной. При этом трубка газификатора может отсутствовать в испарительной камере, что упрощает конструкцию и повышает надежность соединения, а также позволяет осуществлять подачу паров и распыленного криогенного топлива.
Возможно выполнение трубки теплообменника-газификатора кольцевой с распиливающими отверстиями, при этом пары и аэрозоль подаются из предкамеры в испарительную камеру. Такое исполнение также повышает надежность работы камеры сгорания, не допуская попадания жидких частиц топлива на горячие стенки жаровой трубы на переходных режимах и при пусках двигателя.
Выполнение внутренней стенки жаровой трубы с ребрами со стороны испарительной камеры позволяет улучшить теплоотвод от нагретых стенок жаровой трубы и повысить эффективность криогенного топлива при его испарении и газификации, обеспечивая снижение термических напряжений в стенках жаровой трубы, возникающих вследствие перепадов температур на стенках жаровых труб.
На фиг. 1 представлена схема предлагаемого двигателя с подачей криогенного топлива и авиационного керосина;
на фиг. 2 показан элемент I на фиг.1 верхней части сечения камеры сгорания вдоль продольной оси одной из жаровых труб;
на фиг. 3 - элемент II на фиг.1 жаровой трубы с испарительной предкамерой;
на фиг. 4 - элемент II на фиг. 2 жаровой трубы с кольцевой трубкой-распылителем в испарительной предкамере.
Газотурбинный двигатель содержит компрессор 1 с турбиной 2 низкого давления, компрессор 3 с турбиной 4 высокого давления, камеру сгорания 5 с системой подачи криогенного топлива 6, а также теплообменник-газификатор с трубками 7. В газотурбинном двигателе имеются пусковая и аварийная системы подачи керосина 8 с керосиновой форсункой 9.
Камера сгорания 5 может быть выполнена трубчато-кольцевой с жаровыми трубами 10 и кольцевым газосборником II и дополнительно содержать в каждой из жаровых труб 10 испарительную камеру 12, а в ней - распылитель 13 криогенного топлива 6. Испарительная камера образована двумя концентрично расположенными внутренней стенкой 14 и наружной стенкой 15 жаровой трубы 10, скрепленными в ее фронтовой части 16 с полыми лопатками 17 завихрителя 18. Полое центральное тело 19 выполнено с рядами отверстий 20 в его стенке. На выходе 21 жаровой трубы 10 стенки 14 и 15 скреплены с днищем 22. Испарительная камера 12 сообщается отверстиями 20 в полом теле 19 через полые лопатки 17 завихрителя 18 с внутренней полостью 23 жаровой трубы 10.
Распылитель 13 криогенного топлива 6 выполнен из витков теплообменной трубки 7 с рядами отверстий 24. Внутренняя стенка 14 жаровой трубы 10 выполнена с витками спирального ребра 25, а вход 26 трубки 7 в испарительную камеру 12 расположен на выходе 21 жаровой трубы 10.
В испарительной камере 12 выполнена дополнительная перегородка 27 с отверстиями 28, а внутренняя стенка 14 жаровой трубы 10 имеет продольно-поперечные или спирально-кольцевые ребра 29 со стороны испарительной камеры 12, либо с кольцевыми ребрами 30. Поперечная перегородка 27 образует испарительную предкамеру 31. Кроме того, представлены расходный бак 32 криогенного топлива с трубопроводами 33, электронный регулятор 34 подачи криогенного топлива 6, турбонасосный агрегат 35, регулятор запуска 36, насос-регулятор 37 подачи керосина 8. Имеется диффузор 38 с "внезапным расширением" и сопловой аппарат 39 первой ступени турбины. Показаны факел 40 пламени керосиновой форсунки 9, факел 41 пламени газов криогенного топлива 6. В кольцевом газосборнике 11 выполнены отверстия 42 для подвода потока 43 воздуха в полость газосборника 11. Поток 44 газов криогенного топлива проходит через полые лопатки 17 завихрителя 18.
Предлагаемый двигатель работает следующим образом.
При запуске двигателя керосин 8 подается насосом-регулятором 37 в топливные форсунки 9 камеры сгорания 5. Поток воздуха 43, закрученный лопатками 17 завихрителя 18, смешиваясь с топливным аэрозолем керосина 8, воспламеняется факелом 40 от свечи зажигания (не показана).
После прогрева двигателя жидкая фаза криогенного топлива 6 из расходного бака 32 с помощью регулятора запуска 36 подается в турбонасосный агрегат 35, центробежный насос которого соединен с теплообменником-газификатором 7 и с испарительной камерой 12 каждой из жаровых труб 10, далее через распыливающие отверстия 24 теплообменной трубки 7, которая является одновременно распылителем 13 криогенного топлива 6, подается в полость испарительной камеры 12, испаряясь, газифицируется и далее через полые лопатки 17 завихрителя 18 и ряды отверстий 20 в полом теле 19 сжатый газ подается во внутреннюю полость 23 жаровой трубы 10, образуя поток 44. Во внутренней полости 23 смесь воспламеняется и горит факелом 41.
Источники информации
1. Журнал "Гражданская авиация", N1, 1996 г., стр. 10-13.
2. Теплообменные аппараты газотурбинного двигателя. Сборник статей под ред. Б. М.Митина, вып. 4, Труды ЦИАМ N 905, стр. 67.
3. Патент США N 3241311, НКИ 60-35.6, опубл. 1966 г.

Claims (2)

1. Газотурбинный двигатель, работающий на криогенном топливе, содержащий камеру сгорания, выполненную по меньшей мере из одной жаровой трубы с лопаточным завихрителем, и трубчатый теплообменник-газификатор, отличающийся тем, что в камере сгорания жаровая труба содержит дополнительно испарительную камеру, а теплообменник-газификатор размещен в испарительной камере, которая образована двумя концентрично расположенными стенками жаровой трубы, скрепленными на выходе с днищем, а на входе - с лопаточным завихрителем, при этом вдоль трубчатого теплообменника-газификатора выполнены распыливающие отверстия, лопатки завихрителя выполнены полыми, а испарительная камера сообщается с внутренней полостью жаровой трубы через полые лопатки завихрителя, причем вход теплообменника-газификатора в испарительную камеру расположен на выходе жаровой трубы.
2. Газотурбинный двигатель по п.1, отличающийся тем, что испарительная камера содержит дополнительную поперечную перегородку с отверстиями, а внутренняя стенка жаровой трубы - ребра со стороны испарительной камеры.
RU96110335A 1996-05-22 1996-05-22 Газотурбинный двигатель, работающий на криогенном топливе RU2138661C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96110335A RU2138661C1 (ru) 1996-05-22 1996-05-22 Газотурбинный двигатель, работающий на криогенном топливе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96110335A RU2138661C1 (ru) 1996-05-22 1996-05-22 Газотурбинный двигатель, работающий на криогенном топливе

Publications (2)

Publication Number Publication Date
RU96110335A RU96110335A (ru) 1998-08-20
RU2138661C1 true RU2138661C1 (ru) 1999-09-27

Family

ID=20180951

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96110335A RU2138661C1 (ru) 1996-05-22 1996-05-22 Газотурбинный двигатель, работающий на криогенном топливе

Country Status (1)

Country Link
RU (1) RU2138661C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523510C1 (ru) * 2013-02-19 2014-07-20 Николай Евгеньевич Староверов Способ форсажа газотурбинного двигателя
RU2544400C1 (ru) * 2011-04-18 2015-03-20 Ман Дизель Унд Турбо Се Корпус камеры сгорания и оборудованная им газовая турбина
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US9416728B2 (en) 2009-02-26 2016-08-16 8 Rivers Capital, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US10859264B2 (en) 2017-03-07 2020-12-08 8 Rivers Capital, Llc System and method for combustion of non-gaseous fuels and derivatives thereof
US11199327B2 (en) 2017-03-07 2021-12-14 8 Rivers Capital, Llc Systems and methods for operation of a flexible fuel combustor
US11572828B2 (en) 2018-07-23 2023-02-07 8 Rivers Capital, Llc Systems and methods for power generation with flameless combustion
CN115949973A (zh) * 2023-01-09 2023-04-11 哈尔滨工程大学 一种液氨高温气化裂解的火焰筒

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US9416728B2 (en) 2009-02-26 2016-08-16 8 Rivers Capital, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
RU2544400C1 (ru) * 2011-04-18 2015-03-20 Ман Дизель Унд Турбо Се Корпус камеры сгорания и оборудованная им газовая турбина
RU2523510C1 (ru) * 2013-02-19 2014-07-20 Николай Евгеньевич Староверов Способ форсажа газотурбинного двигателя
US10859264B2 (en) 2017-03-07 2020-12-08 8 Rivers Capital, Llc System and method for combustion of non-gaseous fuels and derivatives thereof
US11199327B2 (en) 2017-03-07 2021-12-14 8 Rivers Capital, Llc Systems and methods for operation of a flexible fuel combustor
US11435077B2 (en) 2017-03-07 2022-09-06 8 Rivers Capital, Llc System and method for combustion of non-gaseous fuels and derivatives thereof
US11828468B2 (en) 2017-03-07 2023-11-28 8 Rivers Capital, Llc Systems and methods for operation of a flexible fuel combustor
US11572828B2 (en) 2018-07-23 2023-02-07 8 Rivers Capital, Llc Systems and methods for power generation with flameless combustion
CN115949973A (zh) * 2023-01-09 2023-04-11 哈尔滨工程大学 一种液氨高温气化裂解的火焰筒
CN115949973B (zh) * 2023-01-09 2024-02-06 哈尔滨工程大学 一种液氨高温气化裂解的火焰筒

Similar Documents

Publication Publication Date Title
KR102622706B1 (ko) 연소기용 토치 점화기
US4982564A (en) Turbine engine with air and steam cooling
US5540056A (en) Cyclonic prechamber with a centerbody for a gas turbine engine combustor
JP2599882B2 (ja) 二重アンニュラ燃焼器
US3631674A (en) Folded flow combustion chamber for a gas turbine engine
KR102665162B1 (ko) 가스 터빈 엔진을 위한 연소기
CN106287814B (zh) 一种轴向进气的地面燃气轮机单管燃烧室
JPH0618041A (ja) 二重アンニュラ燃焼器
CN107270328A (zh) 用于燃气涡轮发动机增大器的闭合驻涡腔引燃器
US11280495B2 (en) Gas turbine combustor fuel injector flow device including vanes
RU2138661C1 (ru) Газотурбинный двигатель, работающий на криогенном топливе
JP2599883B2 (ja) 二重アンニュラ燃焼器
US4974415A (en) Staged, coaxial multiple point fuel injection in a hot gas generator
US11215365B2 (en) Nozzle for combustors, combustor, and gas turbine including the same
US3653207A (en) High fuel injection density combustion chamber for a gas turbine engine
JP2019049253A (ja) デュアルフュエル燃料ノズル用のノズルアセンブリ
US5163287A (en) Stored energy combustor with fuel injector containing igniter means for accommodating thermal expansion
CN115405949B (zh) 一种点火装置、方法、燃烧室和燃气轮机
JP4117931B2 (ja) ガスタービンエンジンにおけるターボクーラーエアアシスト燃料噴霧
JPH0255835A (ja) 排ガス脱硝装置を内蔵した排ガスボイラを付設したガスタービン装置
CN114110660A (zh) 供油雾化装置、燃烧室装置及微型喷气式发动机
RU2003132194A (ru) Двухконтурный газотурбинный вентиляторный двигатель
US4063872A (en) Universal burner
CN117212836B (zh) 超音速飞机及独立供油组合式火焰稳定器
RU2236610C2 (ru) Реактивный двигатель