RU2134432C1 - Способ акустического мониторинга изменчивости параметров морских акваторий - Google Patents

Способ акустического мониторинга изменчивости параметров морских акваторий Download PDF

Info

Publication number
RU2134432C1
RU2134432C1 RU97116972A RU97116972A RU2134432C1 RU 2134432 C1 RU2134432 C1 RU 2134432C1 RU 97116972 A RU97116972 A RU 97116972A RU 97116972 A RU97116972 A RU 97116972A RU 2134432 C1 RU2134432 C1 RU 2134432C1
Authority
RU
Russia
Prior art keywords
path
acoustic
parameters
autogeneration
path circuit
Prior art date
Application number
RU97116972A
Other languages
English (en)
Inventor
А.В. Фурдуев
А.В. Аграновский
Original Assignee
Государственное предприятие конструкторское бюро "СПЕЦВУЗАВТОМАТИКА"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие конструкторское бюро "СПЕЦВУЗАВТОМАТИКА" filed Critical Государственное предприятие конструкторское бюро "СПЕЦВУЗАВТОМАТИКА"
Priority to RU97116972A priority Critical patent/RU2134432C1/ru
Application granted granted Critical
Publication of RU2134432C1 publication Critical patent/RU2134432C1/ru

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустики и может быть использовано для создания локальных региональных и глобальных акустических систем долговременного контроля вдоль трасс распространения звука таких параметров морской среды, как средняя температура вод и ее изменчивость, проекции на трассу скорости течения, наличия на трассе гидрофизических неоднородностей, льда, движения рыбных скоплений, прохождения судов и т.п. Существо изобретения заключается в том, что в морской среде формируется акустическая приемно-излучающая трассовая схема. При этом принятый приемным элементов трассовой схемы сигнал подают на излучающую сторону трассы и нелинейно усиливают до появления автогенерации в трассовой схеме на одной из частот, определяемой гидрофизическими условиями на трассе распространения звука, затем измеряют частоту автогенерации в трассовой схеме и по ее значению судят об изменениях параметров морской среды. Режим автогенерации в трассовой схеме можно проводить в прямом и обратном направлениях для определения скорости течения. В трассовой схеме можно выделять требуемую группу лучей и на них возбуждать режим автогенерации. При обработке принятого приемным элементом трассовой схемы акустического сигнала анализируют спектры изменчивости частоты автогенерации, по которым судят о природе изменчивости гидрофизических параметров морской среды. 1 з.п.ф-лы, 4 ил.

Description

Изобретение относится к области гидроакустики и может быть использовано для создания локальных региональных и глобальных акустических систем долговременного контроля вдоль трасс распространения звука таких параметров морской среды как средняя температура вод и ее изменчивость, проекции на трассу скорости течения, наличия на трассе гидрофизических неоднородностей, льда, движения рыбных скоплений, прохождения судов и т.п.
Известны способы акустического мониторинга изменчивости параметров морских акваторий, систематизированных в журнале [1] и статье [2], которые можно свети к двум основным группам:
- монохроматические, в которых излучается и принимается тонально-импульсный сигнал на заранее выбранной частоте и осуществляется измерение времени распространения этого сигнала на трассе либо по фронту импульса, либо по фазе несущей;
- широкополосные, например, когда излучают и принимают линейно-частотно модулированный сигнал [2] для спектроскопии временных задержек или псевдослучайный сигнал в виде фазоманипулированной M-последовательности с определением времени распространения по корреляционной функции между принятым и излученным сигналами.
Общими признаками известных способов [1, 2] акустического мониторинга являются формирование в морской среде акустической приемно-излучающей трассовой схемы и обработка принятого приемным элементом трассовой схемы акустического сигнала, прошедшего трассу распространения звука.
Любой из известных способов может быть принят за прототип, например, способ описанный в работе [3] из журнала [1].
Недостатками известных способов акустического мониторинга являются необходимость излучения больших акустических мощностей для их реализации для получения требуемой точности измерений [2].
Техническим результатом, получаемым от внедрения изобретения, является значительное снижение требуемой мощности излучения для реализации способа, упрощение схемы реализации способа и повышение точности измерений при меньших временных реализациях обработки сигнала за счет самоадаптации автогенератора к условиям распространения звука на трассе.
Данный технический результат достигается за счет того, что в известном способе акустического мониторинга изменчивости параметров морских акваторий, заключающемся в формировании в морской среде акустической приемно-излучающей трассовой схемы и обработке принятого приемным элементом трассовой схемы акустического сигнала, прошедшего трассу распространения звука схемы, принятый приемным элементом трассовой схемы сигнал подают на излучающую сторону трассы и нелинейно усиливают до появления режима автогенерации в трассовой схеме на одной из частот, определяемой гидрофизическими условиями на трассе распространения звука, затем измеряют частоту автогенерации в трассовой схеме, по значению которой судят об изменениях параметров морской среды.
В частном случае формирования режима автогенерации трассовой схемы через морскую среду проводят в двух направлениях: прямом и обратном.
При этом в трассе распространения звука могут выделить требуемую группу лучей (мод), а режим автогенерации трассовой схемы возбудить при использовании выделенный лучей (мод), при этом в качестве приемного элемента используют вертикально ориентированную гидроакустическую антенну.
При обработке принятого приемным элементом трассовой схемы акустического сигнала анализируют спектры изменчивости частоты автогенерации, по которым судят о природе изменчивости гидрофизических параметров морской среды.
Изобретение поясняется чертежом. На фиг. 1, 2 представлены схемы реализации способа соответственно по пунктам 1 и 2 формулы изобретения; на фиг. 3 - схема реализации способа в Голубой бухте на шельфе Черного моря; на фиг. 4 - спектральные диаграммы, поясняющие существо способа.
Методика реализуется в приборе, названном авторами гидроакустическим автогенератором, особенностью которого является то, что среда (звуковой канал) входит в состав прибора и используется в качестве петли обратной связи автогенератора. Схема реализации может быть односторонней (фиг. 1) и включать необходимые преобразователи или реверсивной - с обратимыми преобразователями (фиг. 2).
Второй вариант схемы позволяет дополнительно измерять скорости морских течений.
Схема (фиг. 1) включает в себя гидроакустический излучатель 1 и гидроакустический приемник (приемный элемент) 2, расположенные на определенном расстоянии друг от друга в морской акватории 3. Имеются также последовательно соединенные нелинейный элемент 4, полосовой усилитель 5 и измеритель 6 частоты.
Гидроакустические излучатель 1 и приемник 2 в схеме на фиг. 1 могут быть необратимыми.
В схему с обратимыми гидроакустическими преобразователями 7, 8 (фиг. 2) добавляются дополнительные полосовой усилитель 9 и нелинейный элемент 10, а также два согласующих устройства 11, 12, два переключателя 13, 14, управляющее устройство 15 и линия связи 16. (на фиг. 1 линия связи не показана) Схема соединения электронных блоков представлена на фиг. 1 и 2.
В реальных условиях моря схема, реализующая способ, представлена на фиг. 3.
Представленные на фиг. 1 - 3 элементы формируют в морской среде акустическую приемно-излучающую трассовую схему, работающую в режиме автогенерации или только в прямом (фиг. 1), или последовательно в прямом и обратном направлениях (фиг. 2).
Схема автогенератора с акустической обратной связью в подводном звуковом канале может быть отнесена к классу самоадаптирующихся к среде систем морского мониторинга. При этом частота и амплитуда генерируемых колебаний определяется акустическими характеристиками трассы (включая собственные шумы акватории 3).
Чувствительность автогенератора к параметрам среды обусловлена тем, что положительная обратная связь в схеме осуществляется через излучение разнесенными в пространстве гидроакустическими излучателем 1 (7) и приемником 2 (8). Работа автогенератора сродни известному явлению "микрофонного эффекта", возникающему в помещениях, охваченных системой звукоусиления, или в слуховых аппаратах при превышении предельно допустимого усиления.
Пояснить работу автогенератора можно следующим образом. Пусть, например, шум океана, принимаемый приемником 2 (8) (гидрофоном с чувствительностью En) усиливается полосовым усилителем 5 с коэффициентом передачи Kэ, зависимым от величины звукового давления (поскольку нелинейный элемент 4 делает усилитель 5 нелинейным) и от частоты, определяемой протяженностью трассы (частоты положительной обратной связи) и интерференцией в точке приема.
Усиленный шум Pшум поступает на излучатель 1 (7) с чувствительностью Eн и, пройдя среду морской акватории 3 с потерями Kс и временем распространения звука τ, вновь принимается приемником 2 (8). Очевидно, что Kс - комплексная величина в том числе за счет многолучевости распространения звука (фиг. 2 лучи а, б, . ..n), а акустическая трасса представляет собой цепь обратной связи, которая оказывается положительной лишь для гребенки мод (фиг. 4а), следующих через 2π, в которой соседние частоты разнесены на величину c/l, где c - скорость звука, l - длина трассы. При петлевом (суммарном) коэффициенте передачи M меньше 1, система устойчива и автогенерация не возникает. Однако при этом спектр шума модифицируется и в нем возникают пики (фиг. 4а), подчеркивающие ряд частот, на которых обратная связь - положительна.
Чем ближе M к 1, тем выше амплитуда этих пиков и тем больше их добротность (фиг. 4б). При M=1 в схеме возникает автогенерация на одной из частот (фиг. 4в), где положительная обратная связь и где наблюдается интерференционный максимум для акустической трассы с многолучевым распространением звука. Частота автогенерации и положение максимумов в гребенке пиков модифицированного спектра шума (M<1) зависит от времени распространения сигнала вдоль трассы, а, следовательно, от температуры воды, от скорости течения и от стабильности интерференционной структуры акустического поля в точке приема.
Таким образом, автогенераторная система акустического мониторинга пригодна для:
- измерения изменчивости акустической (волновой) дистанции, обусловленной колебаниями температуры по изменению времени распространения сигнала (фиг. 4д);
- обнаружения изменений интерференционной структуры в акустическом волноводе, обусловленных динамикой неоднородностей в среде (приливы, внутренние волны, боры и т.п.) или движением объектов (косяки рыб, подводное, надводное судно) вследствие нарушения стратификации среды, а также из-за дифракционных эффектов, возникающих на объектах и в случае повышения уровня шума в окрестности приемника 2 (например, на фиг. 3 объектом исследований является судно 17);
- измерение проекции скорости течений на трассу (фиг. 4г) путем сравнения рабочих частот автогенератора вдоль (П) и против (О) течения (в этом случае используется конвертируемая схема на фиг. 2 с обратимыми приемно-излучающими преобразователями 7, 8).
Работа автогенераторной схемы, реализующей способ, чрезвычайно проста. Включают излучатель 1 (7) на определенной частоте (фиг. 1, 2). Акустическая волна проходит акустическую трассу морской акватории 3 до приемника 2, на который одновременно воздействуют контролируемые факторы, например, сигнал, рассеянный судном 17 (фиг. 3). Контролируемый шум усиливается в блоках 4, 5 и вновь поступает на излучатель 1 (7). При этом схема сама настраивается на автогенераторный режим на частоте, величина которой характеризует контролируемый параметр в среде. Частота измеряется измерителем 6 частоты.
Если контролируемым параметром является скорость течения среды, то управляющее устройство 15 (фиг. 2) последовательно переключает все элементы схемы с прямого на обратный. И работа схемы повторяется то в одном, то в обратном направлениях.
Автогенератор всегда самостоятельно настраивается на частоту, соответствующую интерференционному максимуму (на частоту минимальных потерь). Именно поэтому необходимая для самовозбуждения мощность оказывается минимальной. Автогенератор в случае применения в качестве приемника 2 вертикальной антенны также автоматически выберет тот луч (моду) звукового поля, которая переносит наибольшую энергию.
Таким образом, вводя распределение (фазовые или амплитудные) по апертуре антенны можно, возбуждая режим автогенерации с использованием выделенных лучей, исследовать изменчивость гидрофизических параметров морских акваторий по выделенной таким образом трассе.
Причем определение изменчивости гидрофизических параметров морской среды и ее природу проводят по результатам анализа изменчивости частоты автогенерации (температура дает медленное изменение частоты, а появление технического объекта - быстрое и т.д.).
Автогенераторный способ акустического мониторинга изменчивости параметров морских акваторий обладает по сравнению с прототипом:
- простотой и высокой точностью измерения частоты - основного параметра - частоты автогенерации;
- автоматической адаптацией схемы автогенератора к изменяющейся интерференционной акустической картине и настройкой на ее максимум;
- высокой чувствительностью как к модулю, так и к фазе (т.е. волновой дистанции) коэффициента передачи акустического тракта;
- низким уровнем акустического сигнала, необходимого для прецизионных измерений, обусловленного малой спектральной шириной линии автогенерации и невысокой мощностью излучения для компенсации автоматически минимизируемых потерь при распространении звука по трассе.
Источники информации
1. J. Acoust. Joc. Amer., 1994, 86, N 4.
2. Проблемы метрологии и гидроакустических измерений, Менделеево ВНИИФТРИ, 1992, с. 96-101.
3. W. H. Munk, R.C. Spindel, A. Baggeroel, T.C. "Birdsall The heard island feasibility test" // J. Acoust. Joc. Amer., 1994, 96, N 4, pp. 2330-2342 - прототип.

Claims (2)

1. Способ акустического мониторинга изменчивости параметров морских акваторий, заключающийся в формировании в морской среде акустической трассы распространения звука и обработке принятого приемным элементом трассы акустического сигнала, отличающийся тем, что в качестве приемного элемента трассы используют вертикально ориентированную гидроакустическую антенну, с помощью которой в акустической трассе распространения звука выделяют требуемую группу лучей, возбуждают режим автогенерации с использованием выделенных лучей путем направления принятого гидроакустической антенной сигнала на излучающую сторону трассы и нелинейного усиления до появления режима автогенерации на одной из частот, определяемой гидроакустическими условиями на трассе, при этом при обработке принятого гидроакустической антенной сигнала анализируют спектры изменчивости частоты автогенерации, по которым судят о природе изменчивости гидрофизических параметров морской среды.
2. Способ по п.1, отличающийся тем, что формирование режима автогенерации акустической трассы через морскую среду проводят поочередно в прямом и обратном направлениях.
RU97116972A 1997-10-16 1997-10-16 Способ акустического мониторинга изменчивости параметров морских акваторий RU2134432C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97116972A RU2134432C1 (ru) 1997-10-16 1997-10-16 Способ акустического мониторинга изменчивости параметров морских акваторий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97116972A RU2134432C1 (ru) 1997-10-16 1997-10-16 Способ акустического мониторинга изменчивости параметров морских акваторий

Publications (1)

Publication Number Publication Date
RU2134432C1 true RU2134432C1 (ru) 1999-08-10

Family

ID=20198008

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97116972A RU2134432C1 (ru) 1997-10-16 1997-10-16 Способ акустического мониторинга изменчивости параметров морских акваторий

Country Status (1)

Country Link
RU (1) RU2134432C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477498C1 (ru) * 2011-11-25 2013-03-10 Учреждение Российской академии наук Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН (ТОИ ДВО РАН) Метод мониторинга вертикального распределения скорости звука в условиях мелководных акваторий
RU2545422C1 (ru) * 2014-03-26 2015-03-27 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Способ определения местоположения источника свиста в легких человека
RU2563317C1 (ru) * 2014-07-01 2015-09-20 Николай Аркадьевич Нестеров Способ акустического мониторинга изменчивости параметров морских акваторий
RU2795577C1 (ru) * 2022-10-03 2023-05-05 Общество с ограниченной ответственностью "ГидроМаринн" Многочастотный корреляционный способ измерения скорости течений

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.Acoust. Joc.AMER., 1994, 96, N4, p.p. 2330 - 2342, *
А.С.Колчеданцев. Гидроакустические станции. - Л.: Судостроение, 1982, с.73 - 80. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477498C1 (ru) * 2011-11-25 2013-03-10 Учреждение Российской академии наук Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения РАН (ТОИ ДВО РАН) Метод мониторинга вертикального распределения скорости звука в условиях мелководных акваторий
RU2545422C1 (ru) * 2014-03-26 2015-03-27 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Способ определения местоположения источника свиста в легких человека
RU2563317C1 (ru) * 2014-07-01 2015-09-20 Николай Аркадьевич Нестеров Способ акустического мониторинга изменчивости параметров морских акваторий
RU2795577C1 (ru) * 2022-10-03 2023-05-05 Общество с ограниченной ответственностью "ГидроМаринн" Многочастотный корреляционный способ измерения скорости течений

Similar Documents

Publication Publication Date Title
US7330399B2 (en) Sonar system and process
US4270191A (en) Doppler current meter for use at great depths
ES2544952T3 (es) Sistema de sonar y método que proporciona baja probabilidad de impacto sobre mamíferos marinos
US5122990A (en) Bottom tracking system
JP3367462B2 (ja) アクティブソーナー及びその目標検出方法
RU2134432C1 (ru) Способ акустического мониторинга изменчивости параметров морских акваторий
US4319348A (en) Method and apparatus of surveying nodular targets on the sea floor
Jaffe et al. Multibeam imaging using spatially variant insonification
UA30234U (ru) Система ближнего гидроакустичекого непрерывного мониторинга подводной обстановки территориальных вод морской акватории
RU2110810C1 (ru) Способ обнаружения шумящих объектов
RU2658075C1 (ru) Способ сверхразрешения сигналов по времени в активной локации
US3800274A (en) Methods of and devices for transmitting and receiving as used in navigation systems employing the doppler effect
US3064235A (en) Audible broadband sonar monitor
Rosenberger Passive localization
RU2795389C1 (ru) Способ и устройство активной гидролокации
RU2141740C1 (ru) Устройство для измерения уровней давления гидроакустических полей плавсредства
US2735999A (en) Echo- system for determining nature of sea bottom
JPH08114672A (ja) アクティブソーナー装置
RU2726388C1 (ru) Способ позиционирования надводного/подводного объекта при его проходе по заданному фарватеру
Jobst et al. Multistatic detection and tracking using linear maximal sequences
RU2729225C1 (ru) Способ измерения дальности
SU792183A1 (ru) Способ радиолокации со спектральной обработкой сигнала
RU1777106C (ru) Способ определени сверхнизкочастотных флюктуаций акустического сигнала в океане
RU2167500C1 (ru) Способ измерения параметров шумности плавсредства с помощью лазерного гидрофона
Kosta Statistical Evaluation of the Underwater Detection