RU2133462C1 - Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах - Google Patents

Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах Download PDF

Info

Publication number
RU2133462C1
RU2133462C1 RU97117668A RU97117668A RU2133462C1 RU 2133462 C1 RU2133462 C1 RU 2133462C1 RU 97117668 A RU97117668 A RU 97117668A RU 97117668 A RU97117668 A RU 97117668A RU 2133462 C1 RU2133462 C1 RU 2133462C1
Authority
RU
Russia
Prior art keywords
output
photodetector
differential amplifier
logarithm
radiator
Prior art date
Application number
RU97117668A
Other languages
English (en)
Inventor
В.Н. Гришанов
В.И. Мордасов
А.В. Гришанов
А.Н. Крючков
Original Assignee
Самарский государственный аэрокосмический университет им.акад.С.П.Королева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самарский государственный аэрокосмический университет им.акад.С.П.Королева filed Critical Самарский государственный аэрокосмический университет им.акад.С.П.Королева
Priority to RU97117668A priority Critical patent/RU2133462C1/ru
Application granted granted Critical
Publication of RU2133462C1 publication Critical patent/RU2133462C1/ru

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Применение: в энергетических отраслях промышленности и на транспорте для измерения дымности отходящих газов. Сущность изобретения заключается в том, что оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах содержит излучатель, два фотоприемника, защитные стекла, полые светопроводы, отверстия для подачи защитного газа, отражатель, закрепленный за защитным стеклом в полом светопроводе блока излучателя, оптически сопряженный с фотоприемником опорного канала, установленным в блоке излучателя, электронную схему, состоящую из двух линейных усилителей с регулируемыми коэффициентами усиления, двух логарифматоров, дифференциального усилителя и компаратора, при этом выход измерительного фотоприемника через линейный усилитель с регулируемым коэффициентом усиления соединен с входом первого логарифматора, выход которого соединен с неинвертирующим входом дифференциального усилителя, а выход опорного фотоприемника через другой линейный усилитель с регулируемым коэффициентом усиления соединен со входами компаратора и второго логарифматора, выход которого соединен с инвертирующим входом дифференциального усилителя. Технический результат заключается в повышении точности за счет автоматической компенсации загрязнения защитного стекла. 1 ил.

Description

Изобретение относится к оптическим методам анализа и может быть использовано для измерения дымности отходящих газов в энергетических отраслях промышленности и на транспорте.
Двухлучевые оптикоэлектронные измерители концентрации твердых частиц в газовом потоке [1] нечувствительны к флуктуациям интенсивности источника света. Однако в известных конструкциях изменения светового потока, вызванные загрязнением оптических поверхностей присутствующими в контролируемом потоке твердыми частицами, искажают концентрационный отклик измерителей, завышая тем самым показания приборов. Предложенные устройства электростатической очистки, загрязняющиеся осаждающимися частицами оптических поверхностей [2], усложняют конструкцию дымомеров и, в принципе, также не исключают влияний загрязнений оптики на результаты измерений.
Наиболее близким техническим решением является устройство для измерения конструкции компонент в газовой среде [3], содержащее излучатель, оптически сопряженный с двумя фотопреобразователями, причем с одним из них - через исследуемую среду, а с другим - через среду и введенную в нее заглушенную оптически прозрачным материалом трубу, делитель, логарифматор, умножитель, два блока памяти и регистратор. Недостатком известного устройства является неисключенная погрешность измерения оптической плотности, обусловленная загрязнением оптических элементов налипающими на них твердыми частицами.
В основу изобретения поставлена задача - повысить точность измерений оптической плотности дымовых газов и снизить трудоемкость профилактического обслуживания.
Данная задача решается за счет того, что на установленный в блоке излучателя опорный фотопреобразователь падает часть светового потока источника излучения отраженная отражателем, установленным снаружи от защитного стекла в полом светопроводе блока излучателя в струе защитного газа, и логарифмирование сигналов фотопреобразователей производится после их усиления линейными усилителями с регулируемыми коэффициентами усиления. Расположение отражателя за защитным стеклом в полом светопроводе, а его взаимодействующей с газообразной средой и световым потоком оптической поверхности в струе защитного газа, обеспечивает долговременную стабильность коэффициента отражения и тем самым автоматическую компенсацию загрязнения защитного стекла. Проведение процедуры логарифмирования после линейного усиления позволяет получить долговременную стабильность настройки прибора.
На чертеже представлена схема устройства.
Устройство содержит источник света (светодиод, лазер, лампу и т.п.) 1, коллимирующий оптический элемент 2, защитные стекла 3 и 4, отражатель (зеркало, призма, и т.п.) 5, установленный в полом светопроводе блока излучателя 6 в струе защитного газа, опорный фотоприемник (фотодиод, фотоэлемент и т.п.) 7, измерительный фотоприемник 8, фокусирующий элемент (линза, объектив, фокусатор и т.п.) 9, линейные усилители с регулируемым коэффициентом усиления 10, 11, логарифматоры 12, 13, компаратор (пороговый элемент) 14, дифференциальный усилитель (вычитатель) 15, регистратор 16, источник электропитания 17, герметичные корпуса 18, 19, отверстия для подачи защитного газа 20.
Элементы 1, 2, 3, 5, 7 вместе с корпусом 18, светопроводом 6 и отверстиями для подачи защитного газа 20 объединены в блок излучателя, а элементы 4, 8, 9 со своим корпусом, светопроводом и устройством подачи защитного газа объединены в блок приемника. Отражающий элемент 5, фотоприемник 7, усилитель 10 и логарифматор 12 образуют опорный канал, а фотоприемник 8, усилитель 11 и логарифматор 13 - измерительный.
Устройство работает следующим образом. Блоки излучателя и приемника соосно располагаются на противоположных стенках дымохода 21, в которых предварительно вырезаются отверстия 22. В отсутствие дыма путем регулировки коэффициентов усиления линейных усилителей 10 и 11 устанавливают равенство сигналов, подаваемых на вход дифференциального усилителя 15, и соответственно нулевое значение оптической плотности или дымности отходящих газов на регистраторе 16. При загрязнении газового потока сажевыми частицами оптическое пропускание его уменьшится, в результате чего уменьшится выходной сигнал измерительного канала и соответственно регистратор покажет значение дымности потока.
Благодаря вынесенному за защитное стекло 3 отражателю 5 и наличию опорного канала происходит не только компенсация флуктуаций интенсивности света источника 1, что свойственно всем двухлучевым схемам, но и загрязнений оптических элементов 3 и 4 сажей. Установка регулируемых усилителей 10, 11 перед логарифматорами 12 и 13 позволяет электронными методами выровнять чувствительность каналов, которая будет сохраняться при синхронных вариациях чувствительности фотоприемников 7 и 8, вызванных температурным дрейфом или процессами старения. Компаратор 14 выдает сигнал предупреждения о недопустимом снижении интенсивности зондирующего пучка, которое используется для очистки стекол 3, 4 либо для замены источника света 1.
Приведем аналитическое доказательство факта долговременной компенсации влияния дестабилизирующих факторов загрязнения и синхронного дрейфа чувствительности фотоприемников в предлагаемом устройстве. Поскольку коллимирующий 2 и фокусирующий 9 элементы находятся внутри герметичных корпусов и выполняются чаще всего из стекла и металла, то стабильность их характеристик на порядки величин выше, чем электронных и фотоэлектронных компонент, отношение их коэффициентов пропусканий постоянно и не влияет на выводимые соотношения, на основании которых делаются заключения о возможности долговременной компенсации. Коэффициенты пропускания их приняты равными 1. В силу малой апертуры отражающего элемента 5, его близкого расположения к отверстию для подачи защитного газа 20 и практически 180o ориентации его взаимодействующей со светом наружней грани относительно отверстия в дымоходе. Его коэффициент отражения также считается неизменяющимся.
В первом приближении также не учитываются шумовые, темновые и фоновые характеристики фотоприемников и усилителей, т.к., во-первых, в измерительных устройствах подобного типа интенсивность излучателя или максимальная измеряемая оптическая плотность выбираются с позиций многократного превышения сигнала над шумом и, во-вторых, уменьшение влияния этих вредных факторов является предметом специальных исследований и конструкторских приемов.
С учетом приведенных допущений сигнал на выходе логарифматора 13 измерительного канала будет описываться выражением:
U1 = ln(T • T1 • T2 • K1 • G1 • P01), (1)
где T, T1, T2 - коэффициенты пропускания газосажевого потока, защитных окон 3 и 4 соответственно;
K1 - коэффициент усиления усилителя 11;
G1 - чувствительность измерительного фотоприемника 8;
P01 - интенсивность света источника 1, изучаемого в направлении измерительного фотоприемника.
Сигнал на выходе логарифматора 12 опорного канала:
U2(T12 • R • K2 • G2 • P02), (2)
где R - коэффициент отражения отражателя 5;
K2 - коэффициент усиления усилителя 10;
G2 - чувствительность опорного фотоприемника 7;
P02 - интенсивность света источника 1, излучаемого в направлении опорного фотоприемника.
Тогда сигнал на выходе вычитателя 15 примет вид:
U3 = lnT + ln[T2/T1 • G1/G2 • K1/K2 • P01/P02 • 1/R]. (3)
Если при настройке устройства в отсутствие твердых частиц в газовом потоке, т.е. при пропускании T = 1, отрегулировать коэффициенты усиления k1 и k2 так, чтобы сигнал на выходе вычитателя принял нулевое значение (второе слагаемое в выражении (3)), то регистрируемый сигнал будет пропорционален lnT, т. е. дымности, и эта пропорциональность будет сохраняться как при синхронном изменении (например, при изменении температуры или старении) их чувствительностей G1 и G2, коэффициентов усиления линейных усилителей k1 и k2, так и коэффициентов пропусканий T1 и T2 при осаждении сажи на защитных стеклах 3 и 4, что и подтверждает сделанное заключение о компенсации влияния загрязнений на регистрируемые устройством значения дымности.
Источники информации.
1. Гохберг Ж.Л., Захаров М.С. Методы и приборы автоматического контроля выбросов ТЭС. - М.: Энергоатомиздат, 1986. - 144 с.
2. Авторское свидетельство СССР N 1670543 A1, кл. G 01 N 23/53, 1991
3. Авторское свидетельство СССР N 1704039 A1, кл. G 01 N 21/53, 1992.

Claims (1)

  1. Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах, содержащее излучатель, два фотоприемника, логарифматор, защитные стекла, полые светопроводы, отверстия для подачи защитного газа, отличающееся тем, что за защитным стеклом в полом светопроводе блока излучателя закреплен отражатель, оптически сопряженный с фотопримником опорного канала, установленным в блоке излучателя, в электронную схему устройства введены два линейных усилителя с регулируемыми коэффициентами усиления, второй логарифматор, дифференциальный усилитель и компаратор, выход измерительного фотоприемника через линейный усилитель с регулируемым коэффициентом усиления соединен с входом первого логарифматора, выход которого соединен с неинвертирующим входом дифференциального усилителя, а выход опорного фотоприемника через другой линейный усилитель с регулируемым коэффициентом усиления соединен со входами компаратора и второго логарифматора, выход которого соединен с инвертирующим входом дифференциального усилителя.
RU97117668A 1997-10-28 1997-10-28 Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах RU2133462C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97117668A RU2133462C1 (ru) 1997-10-28 1997-10-28 Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97117668A RU2133462C1 (ru) 1997-10-28 1997-10-28 Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах

Publications (1)

Publication Number Publication Date
RU2133462C1 true RU2133462C1 (ru) 1999-07-20

Family

ID=20198365

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97117668A RU2133462C1 (ru) 1997-10-28 1997-10-28 Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах

Country Status (1)

Country Link
RU (1) RU2133462C1 (ru)

Similar Documents

Publication Publication Date Title
US5307146A (en) Dual-wavelength photometer and fiber optic sensor probe
KR20000016360A (ko) 기체 분석 방법 및 장치
WO2009021420A1 (fr) Moniteur de gaz à long trajet optique
CN102353634A (zh) 烟气气体含量激光在线检测系统的在线标定方法
US5572322A (en) Apparatus for measuring particle properties
JP4467674B2 (ja) ガス濃度計測装置
US7151602B2 (en) Particle size distribution analyzer
RU2133462C1 (ru) Оптикоэлектронное устройство для измерения концентрации твердых частиц в дымовых газах
CN202092947U (zh) 烟气气体含量激光在线检测系统的光轴调节机构
RU63067U1 (ru) Оптико-электронное устройство для измерения концентрации твердых частиц в дымовых газах
KR20180103760A (ko) 침착물 센서를 구비한 광 센서
US5617212A (en) Open-path gas monitoring
RU2189029C1 (ru) Измеритель дымности теплоэнергетических установок
CN202133612U (zh) 烟气气体含量激光在线检测系统
CN115877032B (zh) 光干涉闪烁法检测烟气流速的方法及烟气流速测量仪
RU159104U1 (ru) Устройство для контроля параметров аэрозольных потоков
RU212804U1 (ru) Устройство для автоматического контроля параметров аэрозольных выбросов
GB2390893A (en) Method and apparatus for monitoring particles in a stack
JPH05249038A (ja) オイルミスト濃度測定装置
CN219266086U (zh) 在线气体分析装置及吸收光谱法分析装置及荧光光谱法分析装置
RU2044306C1 (ru) Измеритель дымности отработавших газов дизеля
RU2210759C1 (ru) Контроллер дымности отходящих газов теплоэнергетических установок
NAKAMURA et al. On a Method of the Concentration Measurement by the Use of Light Absoption Law
RU2047857C1 (ru) Устройство для автоматического контроля состава отработанных газов
RU2018116C1 (ru) Способ определения показателя рассеяния света в жидких средах и устройство для его осуществления