RU2131598C1 - Устройство для контроля целостности лопаток ротора турбины - Google Patents

Устройство для контроля целостности лопаток ротора турбины Download PDF

Info

Publication number
RU2131598C1
RU2131598C1 RU97108455A RU97108455A RU2131598C1 RU 2131598 C1 RU2131598 C1 RU 2131598C1 RU 97108455 A RU97108455 A RU 97108455A RU 97108455 A RU97108455 A RU 97108455A RU 2131598 C1 RU2131598 C1 RU 2131598C1
Authority
RU
Russia
Prior art keywords
operational amplifier
output
rotor
sensors
blades
Prior art date
Application number
RU97108455A
Other languages
English (en)
Other versions
RU97108455A (ru
Inventor
С.И. Коршаковский
М.А. Красненков
В.Я. Маклашевский
Ю.Г. Путников
Original Assignee
Войсковая часть 75360
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Войсковая часть 75360 filed Critical Войсковая часть 75360
Priority to RU97108455A priority Critical patent/RU2131598C1/ru
Publication of RU97108455A publication Critical patent/RU97108455A/ru
Application granted granted Critical
Publication of RU2131598C1 publication Critical patent/RU2131598C1/ru

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Turbines (AREA)

Abstract

Устройство предназначено для контроля целостности лопаток ротора. Устройство содержит два одинаковых индукционных датчика, расположенных снаружи корпуса турбины, и регистрирующее устройство. В качестве датчиков использованы индукционные датчики с постоянными магнитами. Устройство снабжено операционным усилителем с прямым и инверсным входами и одним выходом, причем выход первого индукционного датчика соединен с прямым входом операционного усилителя. Устройство также снабжено фазовращателем, включенным между вторым индукционным датчиком и инверсным входом операционного усилителя, причем индукционные датчики расположены диаметрально противоположно по отношению к продольной оси ротора, а фазовращатель осуществляет сдвиг фаз электрических сигналов с индукционных датчиков в пределах 0<α≤π/N, где N - число лопаток ротора, причем при четном числе лопаток α>0, при нечетном - ≤π/N, а выход операционного усилителя соединен с регистрирующим блоком. Такое выполнение устройства позволит повысить надежность контроля и его быстродействие. 2 ил.

Description

Изобретение относится к измерительной технике, технике контроля и регулирования, в частности к устройствам, осуществляющим контроль рабочего режима турбин компрессора, энергетических и двигательных установок. Область применения - транспорт, космические летательные аппараты, промышленные энергетические установки, в том числе атомные.
Известно устройство для обнаружения трещин в рабочих лопатках турбомашин, основанное на преобразовании перемещений концов лопатки в электрические сигналы (см. авторское свидетельство СССР N 1101706 от 08.02.83, G 01 M 15/00, БИ "Открытия. Изобретения" N 25, 1984). Устройство содержит датчики перемещения концов лопатки, подключенные к усилителю импульсов, и блок индикации. Устройство отличается тем, что оно дополнительно содержит последовательно соединенные с усилителем импульсов запоминающие блоки и усилители-ограничители, логический элемент совпадения, входы которого подключены к выходам усилителей-ограничителей, блоки вычисления разности сигналов и сброса запоминающих блоков, входы которых подключены к выходу элемента совпадения, причем выход блока вычисления разности сигналов подключен к входу блока индикации, а выход блока сброса запоминающих блоков - к управляющим входам последних. Устройство повышает надежность путем более раннего обнаружения трещин.
Данное устройство принято за прототип. Общими признаками прототипа и изобретения являются датчики, расположенные снаружи корпуса турбины и регистрирующий блок. Недостатком прототипа является невозможность регистрации начала разрушения лопатки, образование трещины и некоторых других дефектов, так как регистрирующая аппаратура не анализирует изменение формы и амплитуды сигнала при начале разрушения. Это, в свою очередь, уменьшает быстродействие системы контроля, и в конечном итоге - надежность этого устройства.
Задачей изобретения является повышение надежности контроля и его быстродействия.
Технический результат, который достигается при использовании изобретения, состоит в том, что быстродействие контроля состояния лопаток ротора повышается по сравнению с прототипом, так как использованы индукционные датчики с постоянным магнитом. Кроме того, увеличивается разрешающаяся способность устройства, что обусловлено тем, что для выявления дефектов используется разностная схема усиления сигнала с датчиков.
Сущность изобретения заключается в том, что устройство содержит два одинаковых датчика с постоянными магнитами, расположенных снаружи корпуса турбины, и регистрирующий блок. Устройство отличается тем, что оно снабжено операционным усилителем с прямым и инверсным входами и одним выходом, причем выход первого индукционного датчика соединен с прямым входом операционного усилителя и фазовращателем, включенным между 2-ым индукционным датчиком и инверсным входом операционного усилителя, причем индукционные датчики расположены диаметрально противоположно по отношению к продольной оси ротора, а фазовращатель осуществляет сдвиг фаз электрических сигналов с индукционных датчиков в пределах 0<α≤π/N, где N - число лопаток ротора, причем при четном числе лопаток α>0, при нечетном - ≤π/N, а выход операционного усилителя соединен с регистрирующим блоком.
Использование операционного усилителя с прямым и инверсным входами при подключении к ним индукционных датчиков, расположенных диаметрально противоположно в плоскости вращения ротора, дает возможность получить на выходе усилителя разность информационных сигналов. При равенстве же сигналов с датчика (кондиционная турбина) выходное напряжение равно нулю. При проявлении трещины, даже самой незначительной, сигнал на выходе становится отличным от нуля. На нулевом уровне малейшее отклонение от нуля заметнее, чем измеренная разность амплитуд сигнала в случае прототипа. Этим и обусловлена большая разрешающая способность предлагаемого устройства и большая надежность контроля. Применение фазовращателя необходимо для подстройки фаз информационных сигналов с датчиков и для изменения фазы сигнала с одного из датчиков в случае нечетного числа лопаток. Например, при N=5 Δφ = π/N = π/5 радиан. При этом сдвиг фаз двух сигналов на входе усилителя получится равным нулю (при расположении датчиков диаметрально противоположно по отношению к оси ротора).
Применение датчиков увеличивает быстродействие устройства, так как выходной сигнал с усилителя формируется одновременно из двух информационных сигналов с датчиков. Благодаря нулевому потенциалу на выходе операционного усилителя для кондиционного ротора параметры усилителя мало чувствительным к изменениям напряжения питания, температуры и других внешних факторов (Алексеев А.Г., Войшвилло Г.В. Операционные усилители и их применение. -М.: Радио и связь, 1989).
Суть изобретения поясняется фиг. 1 и 2. На фиг. 1 обозначено: 1 - ротор с лопатками, ось вращения перпендикулярна чертежу; 2 - первый индукционный датчик, содержащий постоянный магнит стержневого типа и измерительную катушку; 3 - операционный усилитель; 4 - регистрирующий блок; 5 - фазовращатель; 6 - 2-ой индукционный датчик.
На фиг. 2 обозначено: 1 - модель ротора турбины с 8-ю лопатками; 2 - первый индукционный датчик, имеющий 3000 витков проволоки, постоянный магнит выполнен из магнитного материала типа ЮНДК, длина и диаметр магнита имеют соответственно размеры 60 мм и 10 мм; 3 - операционный усилитель общего применения типа 140УД1; 4 - регистрирующий блок - осциллограф С1-70; 5 - 2-ой индукционный датчик.
Устройство работает следующим образом. При вращении ротора 1 (фиг. 1) в постоянном магнитном поле, созданном постоянными магнитами индукционных датчиков 2 и 6, в лопатках ротора 1 возникают вихревые токи. Вихревые токи создают переменное вторичное магнитное поле, которое наводит в измерительных катушках датчиков ЭДС электромагнитной индукции. Информационный сигнал с первого датчика поступает на прямой вход усилителя 3, а со 2-го датчика через фазовращатель 5 - на инверсный. Фазовращатель 5 изменяет фазу сигнала с датчика 6 так, чтобы она стала равной фазе сигнала с датчика 2. На выходе операционного усилителя 3 появляется дифференциальный сигнал, пропорциональный разности информационных сигналов с датчиков 2 и 6. Сигнал с выхода усилителя поступает на вход регистрирующего блока для его записи и дальнейшей обработки (записывающее устройство не показано).
На фиг. 2 показана схема эксперимента, где модель ротора 1 имела 8 лопаток, т. е. четное число. В этом случае эксперимент может быть проведен без использования фазовращателя, а подстройка фазы датчика 5 осуществлялась небольшим поворотом его вокруг оси вращения модели ротора 1. Принцип работы устройства на фиг. 2 с использованием модели ротора ничем не отличается от описания работы устройства (фиг. 1).
Эксперимент проводился на испытательном стенде научной лаборатории кафедры физики МИРЭА. Частота вращения изменялась от 50 до 150 об/с. Сигнал с выхода операционного усилителя подавался на вход осциллографа 4 (фиг. 2), где на экране появлялась нулевая линия при вращении кондиционной модели ротора. При вращении ротора с искусственным дефектом в одной лопатке (пропил глубиной 2 мм, шириной 1 мм) на экране появлялся дифференциальный сигнал, соответствующий разности информационных сигналов с датчиков. Амплитуда сигнала достигала при этом величины ≈ 380 мВ при частоте вращения модели ротора 120 об/с.
Проведенный эксперимент показал работоспособность предлагаемого устройства.
Предлагаемое изобретение может быть использовано в системах контроля работы турбин как при их испытаниях, так и при работе в натурных условиях в динамическом режиме.
Так как турбинные агрегаты - весьма дорогостоящие изделия, то контроль состояния их отдельных элементов в случае появления дефектов (при работе в реальном масштабе времени) является весьма актуальной задачей. Это обуславливает промышленную новизну предлагаемого устройства неразрушающего контроля.

Claims (1)

  1. Устройство для контроля целостности лопаток ротора турбины, содержащее два одинаковых датчика, расположенных снаружи корпуса турбины, и регистрирующий блок, отличающееся тем, что в качестве датчиков использованы индукционные датчики с постоянными магнитами, а устройство снабжено операционным усилителем с прямым и инверсным входами и одним выходом, причем выход первого индукционного датчика соединен с прямым входом операционного усилителя, и фазовращателем, включенным между вторым индукционным датчиком и инверсным входом операционного усилителя, причем индукционные датчики расположены диаметрально противоположно по отношению к продольной оси ротора, а фазовращатель осуществляет сдвиг фаз электрических сигналов с индукционных датчиков в пределах 0<α≤π/N, где N - число лопаток ротора, причем при четном числе лопаток α>0, при нечетном - ≤π/N, а выход операционного усилителя соединен с регистрирующим блоком.
RU97108455A 1997-05-22 1997-05-22 Устройство для контроля целостности лопаток ротора турбины RU2131598C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97108455A RU2131598C1 (ru) 1997-05-22 1997-05-22 Устройство для контроля целостности лопаток ротора турбины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97108455A RU2131598C1 (ru) 1997-05-22 1997-05-22 Устройство для контроля целостности лопаток ротора турбины

Publications (2)

Publication Number Publication Date
RU97108455A RU97108455A (ru) 1999-05-10
RU2131598C1 true RU2131598C1 (ru) 1999-06-10

Family

ID=20193246

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97108455A RU2131598C1 (ru) 1997-05-22 1997-05-22 Устройство для контроля целостности лопаток ротора турбины

Country Status (1)

Country Link
RU (1) RU2131598C1 (ru)

Similar Documents

Publication Publication Date Title
US4967153A (en) Eddy current turbomachinery blade timing system
US7631564B1 (en) Direct shaft power measurements for rotating machinery
US4847556A (en) Eddy current clearance transducing system
CA2676761C (en) Self-testing sensor
US9964435B2 (en) Dynamic characteristic measurement device of centrifugal rotation machine, and centrifugal rotation machine
JP4712390B2 (ja) 位置検出器
US8468898B2 (en) Method and apparatus for continuous sectional magnetic encoding to measure torque on large shafts
CN102538836A (zh) 用于轴的分区磁编码及用于测量旋转角、旋转速度和转矩的方法和设备
EP2138836A2 (en) Permanent magnet rotor crack detection
JPS62249026A (ja) トルク測定装置
US3144769A (en) Means for measuring mass flow rate of fluid flow
JPS6282302A (ja) 回転部材の軸方向移動を検知する装置
US9587963B2 (en) Brushless linear rotary transformer
JP2011180137A (ja) 回転軸パラメータを測定するための部分的磁気符号化方法およびシステム
US3500365A (en) Apparatus for remotely determining the angular orientation,speed,and/or direction of rotation of objects
RU2131598C1 (ru) Устройство для контроля целостности лопаток ротора турбины
US3404339A (en) Measurement of rotational speed of induction motors
Mateev et al. Magnetic elastomer sensor for dynamic torque measurements in magnetic gears
Trofimov et al. Construction of rotational speed sensors based on the wiegand module
RU2687169C1 (ru) Динамически настраиваемый гироскоп
Procaházka Electromagnetic simulator of rotating machine blades for noncontact sensor dynamic testing
Powell et al. Optimisation of magnetic speed sensors
WO1996006793A1 (en) Angle measuring apparatus in a synchronous motor comprised in an elevator machinery and procedure for detecting the position of a motor pole
RU2521716C2 (ru) Датчик скорости
US4814700A (en) Field current measurement device