RU2131590C1 - Способ определения свободного объема в емкости и устройство для его реализации - Google Patents

Способ определения свободного объема в емкости и устройство для его реализации Download PDF

Info

Publication number
RU2131590C1
RU2131590C1 RU97110506A RU97110506A RU2131590C1 RU 2131590 C1 RU2131590 C1 RU 2131590C1 RU 97110506 A RU97110506 A RU 97110506A RU 97110506 A RU97110506 A RU 97110506A RU 2131590 C1 RU2131590 C1 RU 2131590C1
Authority
RU
Russia
Prior art keywords
vessel
output
acoustic vibrations
free space
acoustic
Prior art date
Application number
RU97110506A
Other languages
English (en)
Other versions
RU97110506A (ru
Inventor
М.Т. Тихоступ
Original Assignee
Тихоступ Михаил Тарасович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тихоступ Михаил Тарасович filed Critical Тихоступ Михаил Тарасович
Priority to RU97110506A priority Critical patent/RU2131590C1/ru
Publication of RU97110506A publication Critical patent/RU97110506A/ru
Application granted granted Critical
Publication of RU2131590C1 publication Critical patent/RU2131590C1/ru

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Изобретение может быть использовано для определения объема веществ, например сжиженного газа, в замкнутой емкости. Предлагаемый способ и устройство обеспечивают высокую точность определения свободного объема в емкости без определения температуры находящегося в емкости вещества. В способе, основанном на приеме и преобразовании возбужденных в емкости акустических колебаний в электрический сигнал, из него выделяют сигнал с резонансной частотой свободного объема емкости. Преобразуют его в акустические колебания и воздействуют ими на емкость до установления автогенераторного режима с частотой возбуждения fp. Определяют частоту сигнала fx, соответствующую плоской волне, распространяющейся вдоль свободного объема емкости. Свободный объем емкости определяют по выражению
τ = 4•π•f 2 x •l 2 x /3•f 2 p ,
где lx - длина емкости.
Устройство для реализации способа содержит внешний возбудитель акустических колебаний, датчик акустических колебаний, усилитель, амплитудный селектор и сумматор, вход которого соединен через активный фильтр низких частот с выходом усилителя. Вход амплитудного селектора соединен с управляемым аттенюатором, выход которого соединен с усилителем мощности, выход которого соединен с внешним возбудителем акустических колебаний и управляющим входом управляемого аттенюатора. Выход сумматера соединен с вычислителем. 2 c.п. ф-лы, 3 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для измерения объема вещества, например сжиженного газа, в замкнутых емкостях.
Известно решение, в котором для измерения объема вещества в закрытой емкости используется резонанс акустических колебаний, устанавливающийся на основе возмущающих внешних факторов [1]. Это решение обладает следующими недостатками: устройство работает только при наличии внешних возмущающих воздействий, которые обладают широким спектром частот, следовательно, показания устройства нестабильны, что ведет к низкой точности измерений.
Наиболее близким по технической сущности к заявленному способу является "Способ бесконтактного измерения вещества в емкости" [2]. Способ основан на возбуждении в емкости акустических колебаний, приеме и преобразовании возбужденных колебаний в электрический сигнал, полосовой фильтрации его, при этом отфильтрованный сигнал преобразуют в сигнал, пропорциональный его мощности, фиксируют появление двух смежных максимумов и значения частот, при которых они наступили, измеряют температуру воздуха в емкости и по измеренным значениям частот и температуры определяют глубину залегания вещества.
Устройство для реализации этого способа содержит акустический возбудитель, датчик, преобразующий акустические колебания в электрические сигналы, перестраиваемый полосовой фильтр, измеритель длительности интервала между сигналами, частотомер и датчик температуры.
Недостатки способа и устройства следующие:
- измерение производят на частоте биений, обладающих по своей физической сути нестабильностью по амплитуде и по частоте, что приводит к высокой погрешности и нестабильности измерений;
- различная степень поглощения акустической мощности веществом, находящимся в емкости, также приводит к погрешности измерений;
- измерение температуры внутри емкости не всегда возможно, а внешнее измерение температуры не соответствует истинному значению температуры, что тоже приводит к увеличению погрешности измерений.
В заявленном способе определения свободного объема в емкости, основанном на приеме возбужденных в емкости акустических колебаний и преобразовании их в электрические сигналы, выделяют из электрического сигнала сигнал с резонансной частотой свободного объема fp, преобразуют его в акустические колебания и воздействуют на емкость до установления автогенераторного режима с частотой fp, после чего выделяют сигнал, соответствующий плоской волне, распространяющейся вдоль свободного объема в емкости, и определяют его частоту fx а свободный объем определяют по выражению
Figure 00000002

где lx - длинна емкости.
В устройство для определения свободного объема в емкости, содержащее внешний возбудитель акустических колебаний, введены последовательно соединенные датчик акустических колебаний, усилитель, амплитудный селектор и сумматор, второй вход которого через активный фильтр нижних частот соединен с выходом усилителя, выход амплитудного селектора соединен с управляемым аттенюатором, выход которого соединен с усилителем мощности, выход усилителя мощности соединен с внешним возбудителем акустических колебаний и управляющим входом управляемого аттенюатора, а выход сумматора соединен с вычислителем, причем датчик акустических колебаний и внешний возбудитель акустических колебаний расположены на верхней части емкости.
В свободном объеме закрытой емкости всегда присутствуют акустические колебания [4, стр. 470-471] , обусловленные релаксацией паровой фазы газа и внешним звуковым фоном, эти колебания распространяются по осям X, Y, Z и имеют случайный флуктационный характер [5, 3, стр. 305-307]. В режиме автогенерации устанавливается стационарный режим акустических колебаний и образуются плоские волны [4, стр. 469-470] с резонансными частотами fx, fy, fz, причем
Figure 00000003

где с - скорость звука в газе;
lx, ly, lz - геометрические размеры свободного объема емкости по осям X, Y, Z.
При этом собственная резонансная частота, соответствующая свободному объему в емкости над веществом [3, стр. 145-147]
Figure 00000004

Геометрическая форма свободного объема не влияет на fp, амплитуда которой является наибольшей по отношению к fx, fy, fz [3, стр. 153, 145].
При воздействии на емкость акустических колебаний с частотой fp в свободном объеме устанавливается режим автогенерации, в соответствии с законом Гюйгенса [3, стр. 423-435] амплитуда сигнала с частотой fp находится в точке максимума амплитудно-частотной характеристики свободного объема емкости и обладает высокой стабильностью. Экспериментально установлено, что свободный объем и резонансная частота связаны следующим соотношением:
Figure 00000005

где с - скорость звука в газе;
η - коэффициент пропорциональности, равный π 3)1/2 и имеющий размерность м1/2.
Выразив скорость звука в газе через (2) и заменив в (4) коэффициент η на его значение, получим:
Figure 00000006

Зная lx и определив fx и fp, можно с высокой точностью определить свободный объем емкости, независимо от степени поглощения мощности акустических колебаний веществом в емкости и ее стенками.
На фиг. 1 представлена функциональная схема устройства для определения объема вещества в емкости;
на фиг. 2 - расположение блоков устройства на емкости (железнодорожной цистерне);
на фиг.3 - эпюры электрических сигналов.
Устройство для определения объема вещества в емкости содержит датчик акустических колебаний 1, активный фильтр низких частот 2, сумматор 3, датчик через усилитель 4 соединен с амплитудным селектором 5 и активным фильтром 2, выход которого соединен с входом сумматора 3, второй вход которого соединен с амплитудным селектором 5, а выход - с вычислителем 6, выход амплитудного селектора 5 соединен с управляемым аттенюатором 7, выход его соединен с усилителем мощности 8, выход которого соединен с аттенюатором 7 и внешним возбудителем акустических колебаний 9.
На емкости, например на железнодорожной цистерне, устройство для измерения объема вещества располагается следующим образом: блок преобразования акустических колебаний в электрические сигналы 10 и блок преобразования электрических сигналов в акустические колебания 11 расположены сверху цистерны, причем, как установлено экспериментально, блок 11 необходимо располагать ближе к центру, а блок 10 ближе к краю цистерны, источник питания 12 и вычислитель б соединены с блоками 10 и 11 кабелем связи и находятся в операторском помещении на расстоянии 1 км от емкости.
Блок преобразования акустических колебаний в электрические сигналы 10 содержит датчик 1, усилитель 4, амплитудный селектор 5, активный фильтр низких частот 2 и сумматор 3.
Блок преобразования электрических сигналов в акустические колебания 11 содержит управляемый аттенюатор 7, усилитель мощности 8 и внешний возбудитель акустических колебаний 9.
Датчик 1 принимает и преобразует акустические колебания свободного объема цистерны в электрический сигнал, который усиливается усилителем 4 и имеет вид, показанный на фиг.3б. С выхода усилителя сигнал поступает на вход амплитудного селектора 5. Амплитудный селектор имеет экспоненциальную характеристику и производит выделение сигнала fp из сигналов fp, fx, fy, fz С выхода амплитудного селектора сигнал поступает на аттенюатор 7, начальной настройкой которого устанавливают на выходе внешнего возбудителя акустических колебаний мощность, достаточную для установления автогенераторного режима, затем в процессе работы установленный режим поддерживается автоматически за счет обратной связи с усилителем мощности.
Сигнал с выхода усилителя 4 поступает на вход активного фильтра низких частот 2, который выделяет сигнал с частотой fx, соответствующий плоской волне, распространяющейся вдоль оси X (фиг. 3). Коэффициент передачи фильтра равен 10, т.к. амплитуда сигнала fx много меньше, чем амплитуда сигнала fp.
Сигнал с выхода активного фильтра низких частот 2 поступает на вход сумматора 3, на второй вход которого поступает сигнал с амплитудного селектора, с выхода сумматора сигналы с частотами fp и fx поступают на вычислитель 6, где в соответствии с выражением определяется свободный объем τ.
Изготовлен макет устройства для определения объема сжиженного газа в железнодорожной цистерне, испытания которого проводились на газоналивной станции г. Томска.
Датчик акустических колебаний 1 выполнен на микрофоне 82А-5МУ2. Усилитель 4 выполнен на ИМС К1401УД2Б. Амплитудный селектор 5 содержит антилогарифмический усилитель, выполненный на ИМС К1401УД2Б и транзисторе КТ345, и регулятор усиления, выполненный на транзисторе КП103М.
Усилитель мощности 8 выполнен по мостовой схеме на транзисторах КТ816Б, КТ817Б и ИМС К1401УД2Б.
Управляемый аттенюатор выполнен на транзисторе КП103М.
В качестве внешнего возбудителя акустических колебаний 9 используется низкочастотный громкоговоритель 4ГД8.
Активный фильтр низких частот выполнен на ИМС К1401УД2Б.
Сумматор 3 выполнен на трех ИМС К140УД14.
При испытаниях макет устройства показал следующие характеристики:
погрешность определения свободного объема ±0,05%;
напряжение питания устройства 12 В;
ток потребления 240 мA;
потребляемая мощность 3 Вт;
нестабильность сигнала резонансной частоты 10-4%.
Предлагаемый способ определения свободного объема в емкости и устройство для его реализации обеспечивают высокую точность определения свободного объема, для определения свободного объема не надо знать температуру вещества. При измерении герметичность емкости не нарушается. Измерение количества вещества производится не по уровню, а по объему, конфигурация которого не влияет на процесс измерения.
Литераура
1. Авт. св. N 1270575 "Резонансный уровнемер", кл. G 01 F 23/28 опубл. 15.11.86, б. N 42.
2. РФ, заявка на изобретение N 93040664/10, кл. G 01 F 23/28, опубл. 10.06.96, б. N 16.
3. Е. Скучик. Основы акустики. Том II, перевод с немецкого п/р Ю.М. Сухаревского, М.: Иностранная литература, 1959 г.
4. Е. Скучик, Основы акустики. Том 1, перевод с английского п/р Л.М. Лямшева, М.: Мир, 1976 г.
5. Я. А. Смородинский, Температура, Библиотека "Квант", М.: Наука, 1981, стр. 146-152.

Claims (2)

1. Способ определения свободного объема в емкости, основанный на приеме и преобразовании возбужденных в емкости акустических колебаний в электрический сигнал, отличающийся тем, что из электрического сигнала выделяют сигнал с резонансной частотой свободного объема емкости fp, преобразуют его в акустические колебания и воздействуют ими на емкость до установления автогенераторного режима с частотой возбуждения fp, после чего определяют частоту сигнала fx, соответствующего плоской волне, распространяющейся вдоль свободного объема емкости, а свободный объем определяют по выражению
Figure 00000007

где lx - длина емкости.
2. Устройство для определения свободного объема в емкости, содержащее внешний возбудитель акустических колебаний, отличающееся тем, что в него введены последовательно соединенные датчик акустических колебаний, усилитель, амплитудный селектор и сумматор, второй вход которого через активный фильтр низких частот подключен к выходу усилителя, выход амплитудного селектора соединен с управляемым аттенюатором, выход которого соединен с усилителем мощности, выход которого соединен с внешним возбудителем акустических колебаний и управляющим входом управляемого аттенюатора, а выход сумматора соединен с вычислителем, причем датчик акустических колебаний и внешний возбудитель акустических колебаний расположены на верхней части емкости.
RU97110506A 1997-06-19 1997-06-19 Способ определения свободного объема в емкости и устройство для его реализации RU2131590C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97110506A RU2131590C1 (ru) 1997-06-19 1997-06-19 Способ определения свободного объема в емкости и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97110506A RU2131590C1 (ru) 1997-06-19 1997-06-19 Способ определения свободного объема в емкости и устройство для его реализации

Publications (2)

Publication Number Publication Date
RU97110506A RU97110506A (ru) 1999-05-10
RU2131590C1 true RU2131590C1 (ru) 1999-06-10

Family

ID=20194448

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97110506A RU2131590C1 (ru) 1997-06-19 1997-06-19 Способ определения свободного объема в емкости и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2131590C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2598662C2 (ru) * 2010-02-12 2016-09-27 Мопак Системз Интернешнл С.А. Способ и устройство для изготовления предварительно изолированного сегмента каркасной конструкции

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2598662C2 (ru) * 2010-02-12 2016-09-27 Мопак Системз Интернешнл С.А. Способ и устройство для изготовления предварительно изолированного сегмента каркасной конструкции
RU2726671C2 (ru) * 2010-02-12 2020-07-15 Мопак Системз Интернешнл С.А. Способ и устройство для изготовления предварительно изолированного сегмента каркасной конструкции

Similar Documents

Publication Publication Date Title
EP1099112B1 (en) Measuring the speed of sound in a gas with a small spherical resonator and a non radial mode for analysis of gas mixtures
US4869097A (en) Sonic gas pressure gauge
US3010318A (en) Method and apparatus for measuring liquid level
JPS5847026B2 (ja) 音響放射変換器の較正方法
US3807222A (en) Ultrasonic method of determining chemical relaxation characteristic of solutions and measuring cell therefor
RU2131590C1 (ru) Способ определения свободного объема в емкости и устройство для его реализации
CN115523999B (zh) 颗粒碰撞噪声检测换能器灵敏度测量方法及系统
JPH0664081B2 (ja) ジヤイロメ−タ
RU2029265C1 (ru) Способ определения физических параметров состояния среды
US4949584A (en) Apparatus for measuring depth of a fluid chamber
US3017607A (en) Acoustic impedance detecting apparatus
RU2529634C1 (ru) Способ измерения продольного и сдвигового импендансов жидкостей
Galloway A Simple Calibration Technique for Low‐Sensitivity Transducers
RU2052804C1 (ru) Способ определения коэффициента изотермической сжимаемости
RU2786527C1 (ru) Способ измерения физических свойств жидкости
RU73488U1 (ru) Датчик механических и электрических параметров жидкости
RU2089859C1 (ru) Способ определения физических параметров газожидкостных систем и устройство для его осуществления
SU945683A1 (ru) Ультразвуковое устройство дл измерени температуры
RU2045030C1 (ru) Устройство для измерения плотности жидкости
RU2045024C1 (ru) Твердомер
SU1112270A1 (ru) Акустический блок дл измерени концентрации газа в двухфазных средах
SU1527493A1 (ru) Ультразвуковой измеритель виброперемещений
RU2045029C1 (ru) Устройство для измерения плотности жидкости
SU1688118A1 (ru) Способ определени емкости сосуда
SU737884A1 (ru) Устройство дл измерени электрофизических характеристик пьезокерамических резонаторов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130620