RU2127870C1 - Датчик расхода потока жидкости - Google Patents

Датчик расхода потока жидкости Download PDF

Info

Publication number
RU2127870C1
RU2127870C1 RU97105648A RU97105648A RU2127870C1 RU 2127870 C1 RU2127870 C1 RU 2127870C1 RU 97105648 A RU97105648 A RU 97105648A RU 97105648 A RU97105648 A RU 97105648A RU 2127870 C1 RU2127870 C1 RU 2127870C1
Authority
RU
Russia
Prior art keywords
flow rate
transducer
flow
fluid
fluid flow
Prior art date
Application number
RU97105648A
Other languages
English (en)
Other versions
RU97105648A (ru
Inventor
Н.Н. Вагина
Н.Ф. Глущенко
М.Я. Леонтьев
В.П. Минаев
Н.Ф. Немилов
О.Т. Чижевский
Original Assignee
Государственное научно-производственное предприятие "Прибор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научно-производственное предприятие "Прибор" filed Critical Государственное научно-производственное предприятие "Прибор"
Priority to RU97105648A priority Critical patent/RU2127870C1/ru
Application granted granted Critical
Publication of RU2127870C1 publication Critical patent/RU2127870C1/ru
Publication of RU97105648A publication Critical patent/RU97105648A/ru

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Изобретение может быть использовало для контроля расхода нестационарных потоков разнообразных сред, в т.ч. агрессивных. В рабочей камере, внутри прозрачной направляющей втулки между элементами диодной оптопары размещен упруго нагруженный чувствительный элемент в виде патрубка, имеющего форму усеченного конуса для обеспечения струйной подачи потока. Проходное сечение патрубка равно проходному сечению подводящего и отводящего каналов. Датчик имеет низкий порог срабатывания, отличается простотой и надежностью функционирования. 1 ил.

Description

Изобретение относится к устройствам для измерения расхода жидкостей с колеблющимся элементом, приводящимся в движение потоком этих жидкостей, и пропускающим их непрерывным потоком.
Уровень техники характеризует устройство, описанное в изобретении по а. с. N 313090, опубл. 31.08.71 г. в бюл. N 26, G 01 F 3/12, которое содержит подводящий и отводящий каналы, связанные рабочей камерой повышенного объема, где демпфируются колебания и пульсации давления жидкости и где смонтирован чувствительный элемент, упруго нагруженный и уравновешенный. Чувствительный элемент, взаимодействуя с потоком жидкости, изменяет пространственное положение, что регистрируется преобразователем в виде выходного сигнала другой физической природы, чем сигнал на его входе. Преобразованный сигнал регистрируется, обрабатывается, измеряется и используется в качестве управляющего сигнала обратной связи для исполнительных механизмов.
Устройство контроля за расходом жидкости применяется в магистралях продуктопроводов, системах водоснабжения, дозированной раздачи жидкости промышленных станций, топлива в двигателях внутреннего сгорания.
Достоинством описанного устройства являются широкие технологические возможности использования для активного контроля расхода разнообразных сред, включая агрессивные, нестационарных реверсивных потоков жидкости в трубопроводах высокого давления.
Однако, недостатком этого устройства является сложность конструкции и настройки магнитоуправляемых узлов, переналадки дискретного порога срабатывания сменой шариков различного диаметра (чувствительного элемента), что нетехнологично и трудоемко.
Более простой и функционально надежной конструкцией датчика расхода потока жидкости, выбранной в качестве прототипа, является описанная в изобретении по а. с. N 870936, G 01 F 1/28, 1981 г., содержащая рабочую камеру с подводящими и отводящими каналами, внутри которой соосно подводящему каналу помещен упруго нагруженный пружиной чувствительный элемент в виде патрубка, связанного с преобразователем, представляющим собой катушку индуктивности, и регистрирующий прибор.
Подводящий канал со стороны камеры посредством пружины закрыт дисковым клапаном, к которому примыкают продольные сквозные пазы боковой поверхности патрубка, расположенного в подводящем канале. Второй конец подвижного протяженного патрубка служит сердечником катушки намагничивания.
Известное устройство плавно работает в широком диапазоне расходов жидкости, потому что соотношение проходных сечений каналов и продольных пазов патрубка для коммуникации с рабочей камерой оптимизировано в доверительном диапазоне погрешностей.
Недостатком прототипа является высокий порог срабатывания из-за большого гидравлического сопротивления дискового клапана патрубка, имеющего относительно большой вес ферромагнитного сердечника, и переменная жесткость пружины реверсирования клапана, что снижает точность измерения при различных потоках и разных ходах осевого патрубка. Инерционность следящей системы датчика вносит погрешность в регулирование расхода потока жидкости.
Задачей, на решение которой направлено настоящее изобретение, является повышение точности контроля расхода потока жидкости путем снижения порога срабатывания датчика повышенной чувствительности, без нарушения режима течения жидкости.
Требуемый технический результат достигается тем, что в известном датчике расхода потока жидкости, содержащем рабочую камеру с подводящим и отводящим каналами, внутри которой соосно подводящему каналу помещен упруго нагруженный чувствительный элемент в виде патрубка, связанный с преобразователем, согласно изобретению патрубок, проходное сечение которого равно проходному сечению каналов, выполнен в виде усеченного конуса, помещенного между элементами оптопары преобразователя внутри прозрачной направляющей втулки, соосно отводящему каналу.
Предложенная геометрическая форма выполнения патрубка минимизирует его гидравлическое сопротивление, повышая чувствительность к изменению расхода потока жидкости, и обеспечивает функционирование в виде поршня за счет силы трения потока, так и за счет разрежения в объеме между конической его поверхностью и цилиндрической направляющей втулкой при осевой струйной подаче потока, что снижает порог срабатывания.
Отличительные признаки позволили повысить точность тонкой настройки, которая зависит только от расхода жидкости, являясь функцией скорости потока. При этом компенсируются погрешности давления нестационарного потока и переменной жесткости нагружаемой в динамике пружины реверса воспринимающего чувствительного элемента измерительного преобразователя.
Оптический тракт преобразователя изолирован от контролируемой жидкости прозрачной втулкой - направляющей для продольных перемещений коаксиального ей патрубка, коммутирующего связь свето- и фотодиода оптопары под действием сил трения потока жидкости заданного расхода, что повышает быстродействие и точность срабатывания, упрощает конструкцию.
Таким образом, каждый существенный признак сам по себе известен, но их совокупность представляет новизну качества, то есть получен эффект суммы, а не сумма эффектов, что означает необходимость каждого существенного признака, а их совокупность достаточной для достижения нового технического результата.
Практическая реализация предложенный конструкции доступна специалисту отрасли, совокупность признаков не известна и явным образом не следует из уровня техники.
Сущность изобретения поясняется чертежом, на котором схематично изображен предлагаемый датчик.
Пример выполнения датчика имеет лишь иллюстративные цели и не ограничивает объема прав совокупности существенных признаков формулы изобретения.
Подводящий 1 и отводящий 2 каналы сообщаются посредством рабочей камеры 3, внутри которой соосно каналам 1 и 2 и коаксиально между собой смонтированы: неподвижно втулка 4 из оргстекла и нагруженный тарированной пружиной 5 патрубок 6. Жесткость пружины 5 выбрана из условия удержания и возврата патрубка 6 в исходное положение (на чертеже верхнее положение). Патрубок 6 имеет проходное сечение, равное проходному сечению каналов 1 и 2, то есть основное проходное сечение. В нижней части патрубок 6 имеет форму усеченного конуса 7, который образует свободный объем 8 камеры 3, где установлена пружина 5. В верхней части корпуса камеры 3 по оптической оси, нормальной оси датчика, установлен светодиод 9 и фотодиод 10, образующие оптопару - бесконтактный преобразователь, отображающий положение чувствительного элемента - патрубка 6 в пространстве, как индикатор расхода жидкости. Фотодиод 10 электрически связан в нашем случае с коммутатором включения лазера и схемой управления расхода жидкости (на чертеже условно не показаны).
Работает предложенная структура следующим образом. Поток охлаждающей лазер жидкости установленного расхода через канал 1, патрубок 6 и канал 2 непрерывно подается в систему охлаждения выключенного в исходном состоянии лазера. При этом в объеме 8 возникает разрежение, обусловленное струйным осевым потоком жидкости, и, как результат, разность давлений на торцах патрубка 6. Разностью давлений и силой трения потока жидкости, пропорциональных скорости потока, патрубок 6 перемещается вниз, сжимая пружину 5 - устанавливается оптический канал оптопары 9 - 10. Световой пучок диода 9 с минимальным рассеиванием и поглощением в прозрачной втулке 4 и потоке жидкости принимается фотодиодом 10, который вырабатывает электрический сигнал управления, в частности на включение лазера, охлаждение которого соответствует установленному расходу жидкости в системе.
Когда поток жидкости падает, патрубок 6 перемещается к исходному положению. При достижении критического значения потока оптический канал оптопары 9 - 10 перекрывается патрубком 6 и сигнал фотодиода 10 поступает в схему управления на отключение лазера и (или) увеличение расхода жидкости. Далее процесс повторяется. Таким образом, предложенное устройство является следящей системой с обратной связью управления и саморегулированием.
Сравнительно с действующими датчиками расходомеров, изобретение обеспечило на 20-30% снижение порога чувствительности при прочих равных условиях. Так, предложенный датчик расхода потока жидкости без изменения характеристик проточной части действующего образца реагирует на поток 3,6 ± 0,1 л/мин. Действующий образец срабатывает при потоке 4,5 - 5,2 л/мин.

Claims (1)

  1. Датчик расхода потока жидкости, содержащий рабочую камеру с подводящим и отводящим каналами, внутри которой соосно подводящему каналу помещен упруго нагруженный чувствительный элемент в виде патрубка, связанный с преобразователем и выполняющий функцию поршня, отличающийся тем, что патрубок, проходное сечение которого равно проходному сечению каналов, выполнен в виде усеченного конуса, помещенного между элементами диодной оптопары преобразователя внутри прозрачной направляющей втулки соосно отводящему каналу.
RU97105648A 1997-04-07 1997-04-07 Датчик расхода потока жидкости RU2127870C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97105648A RU2127870C1 (ru) 1997-04-07 1997-04-07 Датчик расхода потока жидкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97105648A RU2127870C1 (ru) 1997-04-07 1997-04-07 Датчик расхода потока жидкости

Publications (2)

Publication Number Publication Date
RU2127870C1 true RU2127870C1 (ru) 1999-03-20
RU97105648A RU97105648A (ru) 1999-04-10

Family

ID=20191769

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97105648A RU2127870C1 (ru) 1997-04-07 1997-04-07 Датчик расхода потока жидкости

Country Status (1)

Country Link
RU (1) RU2127870C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452921C2 (ru) * 2007-06-30 2012-06-10 Эндресс + Хаузер Флоутек Аг Измерительная система для среды, протекающей в технологическом трубопроводе
CN116892983A (zh) * 2023-09-11 2023-10-17 中交第一航务工程勘察设计院有限公司 一种水流流向流速测量装置和测量方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2452921C2 (ru) * 2007-06-30 2012-06-10 Эндресс + Хаузер Флоутек Аг Измерительная система для среды, протекающей в технологическом трубопроводе
CN116892983A (zh) * 2023-09-11 2023-10-17 中交第一航务工程勘察设计院有限公司 一种水流流向流速测量装置和测量方法
CN116892983B (zh) * 2023-09-11 2023-11-14 中交第一航务工程勘察设计院有限公司 一种水流流向流速测量装置和测量方法

Similar Documents

Publication Publication Date Title
AU2011320713B2 (en) Dual feedback vacuum fluidics for a flow-type particle analyzer
JP5523908B2 (ja) 流量測定装置及び流速測定装置
ATE389202T1 (de) Durchflussregeleinrichtung mit umschaltung in abhängigkeit vom fluid
EP0428364A1 (en) Flowmeter
US4610162A (en) Fluidic flowmeter
US11573107B2 (en) Hydraulic system for ultrasonic flow measurement using direct acoustic path approach
RU2127870C1 (ru) Датчик расхода потока жидкости
US6755210B2 (en) Mass flow controller
US4240293A (en) Vortex generating device
CN105806422B (zh) 一种单光纤束流量传感器探头及其检测方法
RU2548055C1 (ru) Шариковый электронно-оптический первичный преобразователь расхода прозрачных жидкостей
RU2208777C2 (ru) Способ измерения поверхностного натяжения жидких сред и устройство для его реализации
SU877339A1 (ru) Пневматический сигнализатор уровн
SU881698A1 (ru) Регул тор давлени
SU439731A1 (ru) Струйный датчик состава газа
SU1174754A2 (ru) Расходомер
RU1827585C (ru) Способ контрол в зкости жидкости
SU1315955A1 (ru) Регул тор давлени газа
RU2065577C1 (ru) Сигнализатор потока
SU823869A1 (ru) Датчик расхода жидкости
SU1177670A2 (ru) Устройство дл измерени расхода
EP0064975A4 (en) SWIRLING FLOWMETER.
Boucher et al. Fluidic flow measurement and control devices
SU1428922A2 (ru) Расходомер жидкости
Kato et al. Measurement of the Pulsation in a Gas Pipe Line and Feasibility Evaluation of the Gas Pulsation Duplicating System