RU2126366C1 - Способ и устройство для очистки сточных вод, устройство для аэрации сточной воды - Google Patents

Способ и устройство для очистки сточных вод, устройство для аэрации сточной воды Download PDF

Info

Publication number
RU2126366C1
RU2126366C1 RU93058397A RU93058397A RU2126366C1 RU 2126366 C1 RU2126366 C1 RU 2126366C1 RU 93058397 A RU93058397 A RU 93058397A RU 93058397 A RU93058397 A RU 93058397A RU 2126366 C1 RU2126366 C1 RU 2126366C1
Authority
RU
Russia
Prior art keywords
nozzle
wastewater
stage
water
pipe
Prior art date
Application number
RU93058397A
Other languages
English (en)
Other versions
RU93058397A (ru
Inventor
Уве Зонненрайн
Original Assignee
Уве Зонненрайн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19914119718 external-priority patent/DE4119718C2/de
Priority claimed from DE19914138695 external-priority patent/DE4138695C2/de
Priority claimed from DE19914140877 external-priority patent/DE4140877C2/de
Priority claimed from DE9205523U external-priority patent/DE9205523U1/de
Application filed by Уве Зонненрайн filed Critical Уве Зонненрайн
Publication of RU93058397A publication Critical patent/RU93058397A/ru
Application granted granted Critical
Publication of RU2126366C1 publication Critical patent/RU2126366C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1242Small compact installations for use in homes, apartment blocks, hotels or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3141Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit with additional mixing means other than injector mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physical Water Treatments (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Изобретение предназначено для очистки и аэрации сточных вод. Очистка сточных вод производится при непрерывном прохождении нескольких ступеней обработки, причем указанное прохождение регулируется устройством управления процессом и контролируется чувствительными элементами. Обработка ведется на механических подготовительных ступенях, на ступенях первичной флотации, двустадийных биологических ступенях очистки и на ступени перечистной флотации. Ступени первичной флотации и биологической очистки снабжены соответствующими газоводными смесителями, а ступени первичной флотации, ступени биологической очистки и ступень перечистной флотации снабжены сепараторами пены твердого материала со сточными желобами. Через водно-газовые смесители и перепускной трубопровод осветленной воды на отдельные ступени подается осветленная вода из выпускного резервуара. Способ пригоден также и для использования в транспортабельном устройстве сблокированной конструкции. Изобретение обеспечивает высокую степень очистки любой сточной воды при колебаниях количеств сточных вод и их меняющихся ингредиентах. 3 c. и 28 з.п.ф-лы, 7 ил.

Description

Изобретение касается способа очистки любых сточных вод, содержащих расщепляемые вещества, путем непрерывной обработки сточных вод в механических подготовительных ступенях, снабженных соответствующими сепараторами твердого материала и выполненных в виде сепаратора крупного твердого материала и сепаратора мелкого твердого материала, а также дополнительно подключенного сепаратора тяжелого материала с последующими ступенями флотации, на которых происходит отделение пены твердого вещества, образованной при использовании водно-газовых смесителей, а также касается устройства для осуществления способа и устройства для аэрации сточной воды.
Известные способы очистки сточных вод осуществляются при использовании нескольких методов осветления преимущественно в стационарных установках. Их конструктивное выполнение является дорогостоящим и громоздким и привязано к постоянным ингредиентам и количествам сточных вод. В транспортабельных устройствах на переднем плане в общем и целом находится фильтровальная техника, наряду с которой предусмотрена биологическая и химическая обработка. Этим самым область применения ограничивается одним видом сточных вод. Всякая фильтровальная техника, эксплуатируемая отдельно или на участках первостепенной важности, приводит к усилению загрязнения в зоне, оставленной без внимания. Механическая фильтровальная техника растворяет в воде дополнительные материалы за счет истирания и турбулентностей. Биологические ступени очистки приводят к увеличению механического загрязнения воды твердыми веществами в виде твердой и живой материи, такими как биошлам, грибки и паразиты. Химическая очистка посредством примесей приводит при широком предварительном исключении всех других загрязняющих материалов к чрезмерному выходу специального мусора.
Каждый способ сам по себе, если он используется целенаправленно и по мере надобности для определенных сточных вод, дает хорошие результаты в определенных сферах применения. Но при этом все же удается достигнуть удовлетворительной общей очистки, отвечающей правилам ввода очищенной сточной воды в водоприемник, в частности, при различных требованиях к сточным водам.
Известен способ очистки сточных вод, содержащих расщепляемые вещества, включающий непрерывную обработку сточных вод на ступени механической подготовительной очистки с использованием осадительного резервуара для отделения тяжелого материала, разделение на первой и второй ступенях флотации, на которых происходит отделение пены твердого материала, образованной при использовании водно-газовых смесителей, ступень биологической очистки, а также известно устройство для очистки сточных вод, содержащее ступень механической подготовительной очистки в виде осадительного резервуара для тяжелого материала, флотаторы первой и второй ступеней, водно-газовые смесители, установку биологической очистки (SU 1446112 A, C 02 F 1/24, 1988).
Известно также устройство для аэрации сточной воды, включающее емкость с подводом для легкой среды, отводом отработанной жидкости и подводящим трубопроводом для сточной воды с сопловым элементом, сообщающимся с легкой средой (SU 103769 A, C 02 F 3/16, 1956).
В основу изобретения положена задача очистки любой сточной воды, которая как продукт серийного производства была бы пригодна для использования в транспортабельном устройстве сблокированной конструкции или для стационарного использования в модульной конструкции и при этом позволяла бы осуществлять широкое управление процессом, самостоятельно приспосабливающим отдельные способы очистки к новым условиям при колебаниях количеств сточных вод и их меняющихся ингредиентах.
Согласно изобретению эта задача решается тем, что сточная вода подвергается аэробной и последующей анаэробной биологической обработке с многократной циркуляцией на каждой отдельной ступени очистки, причем сточная вода, откачиваемая из аэробной биологической ступени очистки, вместе с подаваемой из соответствующего водно-газового смесителя смесью технического кислорода и осветленной воды вновь возвращается на аэробную биологическую ступень очистки, при этом прохождение сточной воды через отдельные ступени обработки контролируется чувствительными элементами, а полученные значения направляются на обработку в устройство управления процессом с последующим регулированием указанного прохождения.
В предпочтительном варианте устройства водно-газовые смесители подключены к возвратному трубопроводу-байпасу для осветленной воды, идущему от выпускного резервуара осветленной воды к сборному резервуару. В благоприятном варианте сепаратор мелкого твердого материала представляет собой вращающуюся в цилиндрической трубе спиральную щетку с шагом спиральных витков, уменьшающемся навстречу потоку сточной воды, причем стенка трубы снабжена множеством расположенных в виде сетки отверстий и проемов. В одной из форм выполнения изобретения аэробная биологическая ступень очистки образована вертикальным цилиндрическим замкнутым пустотелым корпусом, который снабжен впуском сточной воды в зоне днища, сливом воды в крышке и байпасом, соединяющим верхнюю зону пустотелого корпуса с зоной днища. Согласно другому варианту осуществления изобретения для аэрации сточной воды служит устройство, имеющее на замкнутой емкости верхний впуск для легкой среды, нижний впуск для смесительной жидкости и подвод для сточной воды с сопловым элементом, головка которого сообщается с легкой средой, причем цилиндрический сопловый элемент с осевым отверстием состоит из ножки, соединенного с ней корпуса сопла и насаженной сопловой головки, причем между открытой сверху сопловой головкой и корпусом сопла образована кольцеобразная отражательная камера, от которой в сопловое выпускное пространство отходит кольцевое сопло с регулируемой по ширине сопловой щелью, выполненной в виде боковой поверхности усеченного конуса.
Устройство, работающее по предлагаемому способу, позволяет протоколировать данные контроля и осуществлять непрерывный производственный контроль через накопление, обработку и дистанционную передачу данных. Необходимые химикаты можно применять дозированно и целенаправленно, а возникающий в результате при известных условиях шлам из специального мусора может быть удален отдельно. Эксплуатационные расходы при использовании способа, согласно изобретению, малы, поскольку процесс протекает без особого технического обслуживания и все компоненты не вызывают, а если и вызывают, то незначительный, износ.
Ход процесса по способу и примеры выполнения устройства изображены на чертежах и более подробно описаны ниже, при этом:
фиг. 1 показывает схему компоновки транспортабельного устройства сблокированной конструкции;
фиг. 2 - технологическую схему способа, согласно изобретению;
фиг. 3 - схематично продольный разрез сепаратора мелкого твердого материала;
фиг. 4 - схематично продольный разрез аэробной биологической ступени очистки;
фиг. 5 - упрощенное изображение аэрационного устройства;
фиг. 6 - продольный разрез аэрационного устройства;
фиг. 7 - увеличенное изображение точки A на фиг. 6.
Показанная на фиг. 1 сблокированная установка представляет собой сборный резервуар 1 вместимостью, например, 30 м3 с предвключенным сепаратором 2 крупного твердого материала. Очищаемая сточная вода подается в сепаратор 2 по сборному трубопроводу 3. Сепаратор 2 крупного твердого материала целесообразно оснастить сеткой с размером ячеек от 3 до 5 мм. Чувствительный элемент 4 посылает данные измерений уровня воды в сборном резервуаре 1 в устройство 22 управления процессом, а насос 5 нагнетает сточную воду по трубопроводу 6 в сепаратор 8 мелкого твердого материала с размером ячеек сетки от 1 до 2 мм в первую зону сблокированной установки. Отсюда сточная вода, отделенная от крупных компонентов, поступает в осадительный резервуар 12 для тяжелого материала, где вещества тяжелее воды 1-2 мм опускаются в колодец 14 тяжелых материалов, из которого они вручную или в ходе управления процессом периодически выводятся через клапан 16.
Прибор 18 для измерения уровня воды и измеритель 20 величины pH непрерывно контролируют уровень воды и концентрацию ионов водорода в осадительном резервуаре 12 для тяжелого материала и передают значения величин в устройство 22 управления процессом, которое проконтролирует и обрабатывает эти и другие измеряемые значения. Дозатор 24 извести и кислоты направляет соответствующие количества материала, определяемые устройством 22 управления процессом, в механически подготовленную сточную воду. Перепускная труба 26 возвращает избыточную сточную воду обратно в сборный резервуар 1.
Сточная вода из осадительного резервуара 12 для тяжелого материала направляется посредством трубопровода 28 в смесительный резервуар 30 первичной флотации. Незадолго до ввода в смесительный резервуар 30 обогащенная воздухом вода примешивается к сточной воде первым водно-газовым смесителем 32, ниже называемым "тектор". Тектор 32 работает по принципу байпаса и получает смесительную воду из выпускного для осветленной воды резервуара 34 флотации, а воздух - из компрессора 36. Вода, обогащенная воздушными пузырьками, протекает через реакционный объем 38. При этом на поверхности образуются выделения пены твердых материалов, которые в ходе управления процессом через определенные промежутки времени перемещаются с помощью гребка в первый сточный желоб 40. Через выпускной резервуар 42 первичной флотации сточная вода направляется на аэробную биологическую ступень очистки 44. В этом месте сточная вода уже на 95-99% очищена от всех твердых веществ, так что по существу на биологические ступени очистки поступают только лишь растворенные в воде вещества. Эффективность работы биологических ступеней очистки во много раз повышается за счет основательной механической предварительной очистки. На аэробной биологической ступени очистки 44, представляющей собой фильтр с подвижным подстилающим слоем, сточная вода постоянно отсасывается трубно системой 45, вновь подается через насос 46 и трубную систему 47 в очистную ступень 44 и при этом непрерывно снабжается через второй тектор 48 техническим кислородом из кислородных баллонов 50 и смесительной водой из выпускного для осветленной воды резервуара 34 перечистной флотации. Сточная вода может циркулировать до десяти раз в час и достигает при этом регулируемого обогащения кислородом, во много раз превышающего нормальное насыщение. Все текторы работают, как указывалось выше, в режиме байпаса, чтобы обеспечить эксплуатацию редукционных клапанов без помех. Мертвая бактериальная масса на аэробной биологической ступени очистки 44 накапливается на поверхности в виде выделений пены твердого вещества и в ходе управления процессом перемещается через определенные промежутки времени с помощью гребка, преимущественно в виде цепного гребка, во второй сточный желоб 52. Сточная вода направляется теперь через перепуск из аэробной биологической ступени очистки 44 в анаэробную биологическую ступень очистки 54. На этой ступени очистки насосом 55 производится непрерывная циркуляция осветленной воды и контроль за содержанием кислорода посредством чувствительного элемента 56.
После обработки на анаэробной биологической ступени очистки 54 сточная вода по трубопроводу 58 поступает в смесительный резервуар 60 перечистной флотации. Незадолго до вхождения в смесительный резервуар 60 третий тектор 62 добавляет в сточную воду смесь осветленной воды и воздуха. Затем сточная вода поступает в реакционный объем 64 перечистной флотации, в котором на поверхности вновь происходит выделение пены твердого материала. Чувствительный элемент 66 контролирует уровень воды. Через определенные промежутки времени в ходе управления процессом гребок перемещает выделенную пену твердого материала в третий сточный желоб 68. Из реакционного объема 64 очищенная сточная вода поступает в выпускной для осветленной воды резервуар 34 перечистной флотации, где чувствительный элемент 72 для величины pH контролирует концентрацию ионов водорода, а другие чувствительные элементы 73 и 74 контролируют содержание кислорода и температуру воды. Регулятор уровня 76 обеспечивает сток очищенной воды и трубопровод 70 или через клапан 78 обратно в сборный резервуар 1, причем для водно-газовых смесителей 32, 48 и 62 (текторы 1-3) в качестве смесительной воды выделяется соответствующее количество очищенной воды. Благодаря управляемым в ходе процесса нагревательным стержням 80 температура ступеней очистки 44 и 54 поддерживается постоянной.
Устройство 22 управления процессом контролирует и протоколирует все измеряемые величины, такие как уровень воды, кислород, величины pH, температура, управляет, кроме того, отдельными функциями насосов, дозаторами извести и кислоты, дозировкой кислорода, переключением клапанов, текторами, гребками для пены твердого материала и отбросными массами для производственного процесса, а также поднимает тревогу при нарушении режима работы и предотвращает в случае тревоги выход недостаточно очищенной воды.
Сепаратор 8 мелкого твердого материала представляет собой согласно фиг. 3 в сущности вращающуюся спиральную щетку 11, концентрично установленную в цилиндрической трубе 9. Спиральная щетка 11 имеет шаг, начинающийся на ее нижнем свободном конце и уменьшающийся к ее другому концу, на котором установлен приводной двигатель 19 с редуктором, т.е. шаг витков спирали щетки 11 непрерывно уменьшается навстречу потоку сточной воды. Стенка цилиндрической трубы 9 снабжена множеством размещенных в виде сетки отверстий и проемов (не показаны), площади которых приспособлены к максимальному размеру частиц отделяемых твердых материалов.
Труба 9 концентрично установлена в трубе-оболочке 13, имеющей в средней зоне своей длины водоприточный короб 21 с водоподводящей трубой 15 для очищаемой сточной воды. Водоподводящая труба 15 соединена с сепаратором 2 крупного твердого материала.
Диаметр трубы-оболочки 13 выбран так, что расстояние до наружной поверхности внутренней трубы 9 с отверстиями и проемами позволяет обеспечить круговое распределение сточной воды, подаваемой через водоприточный короб 21. Пространство 27 между внутренней трубой 9 и трубой-оболочкой 13 герметизировано на нижнем конце 23, а внутренняя труба 9 на нижнем конце открыта и служит выходом 25 для воды. В верхней части внутренней трубы 9 и трубы-оболочки 13 с одной стороны предусмотрен выход 17 для шлама.
Очищаемая сточная вода по водоподводящей трубе 15 и водоприточному коробу 21 подается в промежуточное пространство 27 между трубой-оболочкой 13 и трубой 9 с размещенными в виде сетки отверстиями и проемами. Сточная вода входит через отверстия и проемы в зону спиральной щетки 11, приводимой во вращение приводным двигателем 19. В то время, как вода стекает в направлении нижнего свободного конца трубы 9 к выходу 25, твердые материалы, особенно мелкие, удерживаются витками спиральной щетки 11 и транспортируются вверх. За счет находящегося между витками спирали твердого материала, количество которого увеличивается вверх в направлении к выходу 17 для шлама, и уменьшающегося при этом пространства твердые материалы сжимаются и в уплотненном виде выбрасываются через выход 17 для шлама. Благодаря вращению спиральная щетка 11 имеет самоочищающий эффект. Эксплуатация обеспечивает щадящий вынос твердых материалов. Износ спиральной щетки 11 ниже, чем при проточном режиме.
Аэробная биологическая ступень очистки 44 образована согласно фиг. 4 вертикально стоящим цилиндрическим замкнутым пустотелым корпусом 31, снабженным подводом 33 сточной воды в зоне 35 днища, водоотводом 37 в крышке 39 и байпасом 43, соединяющим верхнюю часть 41 пустотелого корпуса 31 с зоной 35 днища.
Пустотелый корпус 31 может представлять собой цилиндр круглого сечения, которое в верхней трети или четверти цилиндра сильно увеличено, причем переход к верхней части 41 выполнен в виде воронки. Подвод 33 сточной воды выходит в зоне 35 днища в напорную выпускную камеру 49, наружная поверхность которой имеет множество мелких выходных отверстий 51. Свободное сечение трубы подвода 33 сточной воды превышает сумму площадей поперечных сечений выходных отверстий 51.
Байпас 43, соединяющий верхнюю часть 41 пустотелого корпуса 31 с зоной 35 днища, содержит циркуляционный насос 57, вызывающий циркуляцию сточной воды в направлении стрелки 63. Вход 53 байпаса расположен таким образом, что он отсасывает сточную воду в месте перехода к увеличенному сечению верхней части 41. Предусмотрено несколько инжекционных вводов 59 на подводе 33 сточной воды и на байпасе 43, через которые может осуществляться подача дозировок pH, воздуха, кислорода или других специальных веществ, количества которых определяется рядом чувствительных элементов 65, управляемых вычислительным устройством.
В пустотелый корпус 31 загружены специальные твердые материалы в качестве носителя штаммов бактерий, которые должны витать в водном потоке в направлении стрелки 67. Бактерии имеют возможность свободного развития на поверхности твердых материалов. Увеличенная площадь поперечного сечения в верхней зоне 41 обеспечивает меньшую скорость течения, обозначенную более короткой стрелкой 69. Малая скорость течения делает возможным опускание или задерживание твердых материалов с бактериями, которые не вымываются через водоотвод 37, байпасом 43 вновь возвращаются в зону 35 днища. Отлагающиеся на дне пустотелого корпуса 31 или скапливающиеся в зоне 35 днища твердые материалы завихряются сточной водой, вытекающей из байпаса 43 и выходных отверстий 51 напорной выпускной камеры 49. За счет соотношения величин выходных отверстий 51 и проточного отверстия трубы подвода 33 сточная вода выходит из выходных отверстий 51 под давлением и может завихрять и поднимать осевшие на дне твердые материалы носителя. Температура сточной воды контролируется чувствительными элементами и регулируется нагревательными устройствами (не показаны), управляемыми вычислительной машиной.
В установленной вертикально и замкнутой, имеющей форму цилиндра или прямоугольного параллелепипеда емкости 101 (см. фиг. 5), в крышке 102 предусмотрен подвод 103, а в днище 104 возле отвода 105 предусмотрена подводящая труба 106, которая проходит в верхнюю треть емкости 101 и несет по существу цилиндрический сопловый элемент 107. Обрабатываемая жидкость направляется по подводящей трубе 106 в сопловый элемент 107. В верхней части 108 емкости 101 находится более легкая среда, которая может представлять собой жидкость или газ и подается через подвод 103., если устройство работает в режиме смесителя. В нижней части 109 емкости 101 накапливается обработанная в сопловом элементе 107 жидкость, которая отводится через отвод 105.
Положение уровня между легкой средой в зоне 108 и тяжелой средой в зоне 109 контролируется сигнализатором уровня 110, регулирующим подачу легкой среды через переключающую электронику (не показана) для установки уровня между минимальной отметкой 111 и максимальной отметкой 112.
Цилиндрический сопловый элемент 107 (фиг. 6) состоит из ножки 116 и корпуса 118, жестко связанных друг с другом, и навинченной составной головки 120. Этот составной сопловый элемент имеет, если не считать выпуклый замыкающий колпачок 122, сквозное осевое отверстие 114, примерно соответствующее наружному диаметру подводящей трубы 106, которая соединена с корпусом сопла 107 в зоне днища сопловой ножки 116. Непосредственно над концом подводящей трубы 106 отверстие 114 расширено за счет первой кольцевой канавки 124 и образует тем самым первую распределительную полость. Замыкающий колпачок 122 расположен над коротким отрезком трубы 123, образующем с верхней кромкой кольцевой канавки 124 круговую кромку срыва потока. От кольцевой канавки 124 в осевом направлении корпуса сопла 107 отходит множество отверстий 126, оканчивающихся в протяженной второй кольцевой канавке 127 в корпусе сопла. Ко второй кольцевой канавке 127 примыкает множество отверстий 128 меньшего диаметра, образующие тем самым другие кромки срыва потока. Эти отверстия 128 выходят в кольцеобразную отражательную камеру 129 в сопловой головке 120. Верхняя кромка осевого отверстия 114 корпуса 118 сопла выполнена в виде боковой поверхности усеченного конуса и образует нижнюю часть сопла 130. Верхняя часть 131 сопла со своим фланцем 132 и широким резиновым кольцом 133 зажата между сопловой щекой 134 и свинчивающей щекой 135 и образует сопловую головку 120, которая навинчивается на корпус 118 с прокладыванием резинового кольца 136 круглого сечения. Затяжкой свинчивающей щеки 135 устанавливается задняя величина открытия сопловой щели 137. Широкое резиновое кольцо 133 позволяет верхней части 131 сопла совершать эластичное вертикальное движение. Этим обеспечивается возможность самоочищения сопловой щели 137. При засорении части сопловой щели 137 верхняя часть 131 сопла может приподниматься и настолько расширять отверстие сопла, что, несмотря на загрязнение, вновь выходит необходимое количество среды, и загрязнение вымывается через расширенное отверстие сопла. После очистки сопловой щели 137 первоначальная ширина отверстия восстанавливается благодаря упругости резинового кольца 133.
Как видно из увеличенного фрагмента на фиг.7, уклон поверхностей сопловой щели 137 выбран так, что ширина щели уменьшается к вершине верхней части 131 сопла. Кроме того, кромка верхней части сопла оснащена фаской 138 срыва потока. Благодаря этому струя сопла 130 принимает форму боковой поверхности конуса, направленного своей вершиной в точку, лежащую на центральной оси соплового элемента 107. В части отверстия 114 корпуса 118 сопла, обозначенной как сопловое выпускное пространство 140, установлена муфта 141, нижний конец которой выполнен сужающимся и оканчивается непосредственно над одним или несколькими сопловыми выходами 142. На чертеже для большей наглядности изображен только один сопловый выход 142. Однако целесообразно предусматривать несколько выходов, чтобы обеспечить беспрепятственный слив жидкости. Замыкающий колпачок 122, имеющий форму шарового сегмента и установленный на входе ножки 116 напротив подводящей трубы 106, предотвращает на нижнем конце соплового сливного пространства 143 попадание брызг среды назад в сопловое выпускное пространство 140, что достигается благодаря выполнению его в виде шарового сегмента в сочетании с коническим сужением муфты 141.
При использовании устройства в качестве смесителя жидкость под давлением подается через подводящую трубу 106 в сопловый элемент 107 и поступает через первую кольцевую канавку 124 и несколько отверстий 126 во вторую кольцевую канавку, а затем через отверстия 128 - в кольцеобразную отражательную камеру 129. Указанные кольцевые канавки и отверстия установлены последовательно в кожухе соплового элемента 107. В местах перехода между кольцевыми канавками и отверстиями предусмотрены кромки срыва потока, взламывающие молекулярную структуру жидкости. Многократно проходя по кромкам срыва потока перед прохождением через кольцевое сопло, жидкость благодаря основательному разрыхлению молекулярной структуры наилучшим образом подготавливается к тому, чтобы принимать или отдавать другие молекулы среды в сопловом выпускном пространстве.
К кольцеобразной отражательной камере 129 примыкает кольцевое сопло 130, сопловая щель 137 которого сужается к своему концу. Верхняя часть 131 сопла укорочена по сравнению с нижней частью и снабжена фаской срыва потока. Сопло создает направленную в среднюю зону соплового выпускного пространства и имеющую форму боковой поверхности конуса струю, идущую из различных направлений.
Благодаря этому достигается практически почти удвоенная скорость столкновения. При этом выходящей струей создается всасывающий эффект в направлении стрелки 144, в результате чего более легкая среда (жидкость или газ) всасывается через открытую сверху сопловую головку 120 из верхней зоны 108 (фиг. 5), смешивается со средой, выходящей из отражательной камеры 129 и сопла 130, нагнетается в направлении соплового выхода 142 и направляется в нижнюю зону 109.
При использовании устройства для разделения жидкостей различной плотности или газов и жидкостей режим работы осуществляется путем отсасывания тяжелой среды на отводе 105 и легкой среды на подводе 103 (фиг. 5). За счет возникающего в сопловом элементе 107 разрежения разделяемая среда засасывается через подводящую трубу 106. Кольцевое сопло 130 создает в сопловом выпускном пространстве 140 струю в виде боковой поверхности конуса. Действующая при этом высокая скорость столкновения и освобождающая энергия создают облако среды со взломанной молекулярной структурой, обеспечивающее возможность отсасывания частиц с меньшей плотностью из сопловой головки навстречу направлению стрелки 144. Частицы тяжелой среды следуют за действующим со стороны соплового выхода 142 разрежением и попадают в нижнюю зону. Отсасывание легкой и тяжелой среды из верхней или же нижней зоны соответственно 108 и 109 контролируется сигнализатором уровня 110 и регулируется таким образом, чтобы уровень между этими средами поддерживался в допустимых пределах, обозначенных минимальной 111 и максимальной 112 отметками.
Байпасный возврат осветленной воды через перепускную линию 82 в процесс очистки позволяет регулировать размер и количество пузырьков и, тем самым, флотацию в смесительном резервуаре 30 первичной флотации, в аэробной биологической ступени очистки 44 и в смесительном резервуаре 60 перечистной флотации.

Claims (31)

1. Способ очистки сточных вод, содержащих расщепляемые вещества, включающий непрерывную обработку сточных вод на ступени механической подготовительной очистки с использованием осадительного резервуара для отделения тяжелого материала, разделение на первой и второй ступенях флотации, на которых происходит отделение пены твердого материала, образованной при использовании водно-газовых смесителей, ступень биологической очистки, отличающийся тем, что ступень механической подготовительной очистки включает сепаратор крупного твердого материала и сепаратор мелкого твердого материала, биологическую очистку осуществляют путем аэробной и последующей анаэробной очистки с многократной циркуляцией на каждой отдельной ступени очистки, регулируемой в ходе процесса через байпасы, причем сточную воду, циркулирующую на аэробной ступени очистки, смешивают с подаваемой из водно-газового смесителя смесью технического кислорода и осветленной воды, при этом прохождение сточной воды через отдельные ступени обработки контролируют и регулируют при помощи чувствительных элементов и устройства управления процессом.
2. Способ по п.1, отличающийся тем, что первая ступень флотации включает смесительный резервуар и соединенную с ним реакционную камеру, при этом в сточную воду перед введением в смесительный резервуар вводят обогащенную воздухом осветленную воду посредством водно-газового смесителя.
3. Способ по п.1 или 2, отличающийся тем, что сточную воду из реакционной камеры первой ступени флотации направляют в выпускной резервуар.
4. Способ по одному из пп.1 - 3, отличающийся тем, что вторая ступень флотации включает смесительный резурвуар и реакционную камеру, сточную воду после выхода из анаэробной биологической ступени очистки подают в смесительный резервуар второй ступени флотации, при этом перед подачей в смесительный резервуар в сточную воду через водно-газовый смеситель вводят осветленную воду, обогащенную воздухом.
5. Способ по одному из пп.1 - 4, отличающийся тем, что сточную воду из смесительного резервуара подают в реакционную камеру второй ступени флотации.
6. Способ по одному из пп.1 - 5, отличающийся тем, что пену твердого материала, выделенную в реакционных камерах первой и второй ступеней флотации и ступени аэробной биологической очистки, подвергают биологической очистки, подвергают биологической очистке, соответствующей по составу пены и применяемым бактериям.
7. Способ по одному из пп.1 - 6, отличающийся тем, что циркуляцию сточной воды на аэробной биологической ступени очистки производят при необходимом регулировании до уровня обогащения кислородом, кратного нормальному насыщению, а на анаэробной биологической ступени очистки кислород удаляют примерно до нуля.
8. Способ по п.7, отличающийся тем, что сточную воду циркулируют до десяти раз в 1 ч.
9. Способ по одному из пп. 1 - 8, отличающийся тем, что прекращают возврат воды из выпускного резервуара для осветленной воды в сборной резервуар и/или перекрывают сточный трубопровод выпускного резервуара для осветленной воды автоматически при несоблюдении заданных параметров воды в процессе работы биологических ступеней очистки.
10. Устройство для очистки сточных вод, содержащее ступень механической подготовительной очистки в виде осадительного резервуара для тяжелого материала, флотаторы первой и второй ступеней, водно-газовые смесители, установку биологической очистки, отличающееся тем, что оно снабжено сепараторами крупного и мелкого твердого материала, сборным резервуаром, выпускным резервуаром для осветленной воды и перепускным трубопроводом, представляющим собой байпас, идущий от выпускного резервуара для осветленной воды к сборному резервуару, при этом установка биологической очистки имеет ступень аэробной и ступень анаэробной биологической очистки, а водно-газовые смесители соединены с перепускным трубопроводом.
11. Устройство по п.10, отличающееся тем, что осадительный резервуар для тяжелого материала снабжен переливным устройством и соединенной с ним перепускной линией, идущей к сборному резервуару.
12. Устройство по п.10 или 11, отличающееся тем, что на аэробной биологической ступени очистки и на анаэробной биологической ступени очистки установлены управляемые в ходе процесса нагревательные стержни для регулирования температуры.
13. Устройство по одному из пп.10 - 12, отличающееся тем, что в выпускном резервуаре для осветленной воды установлены регулятор уровня и клапан для регулирования стока воды через сточный трубопровод или через перепускной трубопровод в сборный резервуар.
14. Устройство по одному из пп.10 - 13, отличающееся тем, что сепаратор мелкого твердого материала выполнен в виде установленной в цилиндрической трубе вращающейся спиральной щетки, шаг витков которой уменьшается навстречу потоку сточной воды, причем в стенке трубы выполнено множество отверстий и проемов в виде сетки.
15. Устройство по п.14, отличающееся тем, что труба с отверстиями в виде сетки концентрично установлена в трубе-оболочке, которая в средней зоне снабжена водоподводящей трубой.
16. Устройство по п.14 или 15, отличающееся тем, что кольцевое пространство между внутренней трубой и трубой-оболочкой на их нижнем конце герметизировано.
17. Устройство по одному из пп.14 - 16, отличающееся тем, что труба-оболочка на верхнем конце герметично изолирована от трубы, которая соединена с выходом для шлама, герметично изолированным от трубы-оболочки.
18. Устройство по одному из пп.10 - 17, отличающееся тем, что ступень аэробной биологической очистки имеет вертикально установленный цилиндрический корпус, снабженный подводом сточной воды в зоне днища, водоотводом в крышке или в верхней части корпуса с байпасом, соединяющим верхнюю часть корпуса с зоной днища.
19. Устройство по одному из пп.10 - 18, отличающееся тем, что корпус аэробной биологической очистки в зоне днища имеет напорную выпускную камеру с выходными отверстиями, при этом подвод сточной воды соединен с напорной выпускной камерой, а площадь сечения выходного отверстия подвода сточной воды больше, чем сумма площадей поперечных сечений выходных отверстий камеры.
20. Устройство по пп.10 - 19, отличающееся тем, что площадь поперечного сечения верхней части корпуса аэробной очистки, расположенной выше входа байпаса, больше площади поперечного сечения нижней зоны.
21. Устройство по одному из пп.10 - 20, отличающееся тем, что на байпасе установлен насос с регулируемой производительностью.
22. Устройство по одному из пп.10 - 21, отличающееся тем, что байпас и/или подвод сточной воды сопряжены с инжекционными вводами.
23. Устройство по одному из пп.10 - 22, отличающееся тем, что в корпусе аэробной очистки установлены чувствительные элементы.
24. Устройство для аэрации сточной воды, включающее емкость с подводом для легкой среды, отводом отработанной жидкости и подводящим трубопроводом для сточной воды с сопловым элементом, сообщающимся с легкой средой, отличающееся тем, что сопловый элемент выполнен в виде цилиндра с осевым отверстием, имеющего ножку, соединенный с ней корпус и насаженную сопловую головку, причем между открытой сверху сопловой головкой и корпусом сопла образована кольцеобразная отражательная камера, от которой в сопловое выпускное пространство отходит кольцевое сопло с сопловой щелью, образованной боковой поверхностью конуса и регулируемой по ширине, подвод для легкой среды установлен в верхней части емкости, а отвод отработанной жидкости расположен в днище емкости.
25. Устройство по п.24, отличающееся тем, что сопловая щель выполнена сужающейся к выходу сопла, а кромка верхней части сопла снабжена фаской для срыва потока.
26. Устройство по п.24 или 25, отличающееся тем, что оно снабжено резиновым кольцом, вложенным в резьбовое соединение между корпусом сопла и сопловой головкой и позволяющим регулировать размер сопловой щели.
27. Устройство по одному из пп.24 - 26, отличающееся тем, что верхняя часть сопла установлена в сопловой головке посредством широкого резинового кольца с возможностью эластичного вертикального движения.
28. Устройство по одному из пп.24 - 27, отличающееся тем, что в сопловом выпускном пространстве установлена муфта, нижний конец которой выполнен сужающимся.
29. Устройство по одному из пп.24 - 28, отличающееся тем, что в корпусе соплового элемента ниже сужающегося конца муфты выполнены один или несколько сопловых выходов.
30. Устройство по одному из пп.24 - 29, отличающееся тем, что ножка соплового элемента имеет кольцевую канавку и расположенный над ней замыкающий колпачок, образующий с верхней кромкой кольцевой канавки круговую кромку для срыва потока, при этом подводящая труба оканчивается в кольцевой канавке ножки соплового элемента.
31. Устройство по одному из пп.24 - 30, отличающееся тем, что корпус соплового элемента имеет дополнительную кольцевую канавку, сообщающуюся с основной кольцевой канавкой посредством отверстий, выполненных в ножке и образующих с дополнительной кольцевой канавкой множество кромок срыва потока за счет изменения поперечного сечения.
Приоритет по пунктам:
14.06.91 по пп.1 - 13;
25.11.91 по пп.14 - 17;
11.12.91 по пп.18 - 23;
23.04.92 по пп.24 - 31.
RU93058397A 1991-06-14 1992-06-09 Способ и устройство для очистки сточных вод, устройство для аэрации сточной воды RU2126366C1 (ru)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DEP4119718.6 1991-06-14
DE19914119718 DE4119718C2 (de) 1991-06-14 1991-06-14 Verfahren zur klaerung von abwasser, welches feststoffhaltige und biologisch abbaubare materialien enthaelt
DE19914138695 DE4138695C2 (de) 1991-06-14 1991-11-25 Vorrichtung zur Klärung von Abwasser
DEP4138695.7 1991-11-25
DE19914140877 DE4140877C2 (de) 1991-06-14 1991-12-11 Vorrichtung zur Klärung von Abwasser
DEP4140877.2 1991-12-11
DE9205523U DE9205523U1 (de) 1992-04-23 1992-04-23 Vorrichtung zur Behandlung von Flüssigkeiten unterschiedlicher Dichte oder von Gasen und Flüssigkeiten
DEG9205523.0 1992-04-23
DEG9205523.0U 1992-04-23
PCT/DE1992/000485 WO1992022506A1 (de) 1991-06-14 1992-06-09 Verfahren und vorrichtung zur klärung von abwasser

Publications (2)

Publication Number Publication Date
RU93058397A RU93058397A (ru) 1996-07-10
RU2126366C1 true RU2126366C1 (ru) 1999-02-20

Family

ID=27435216

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93058397A RU2126366C1 (ru) 1991-06-14 1992-06-09 Способ и устройство для очистки сточных вод, устройство для аэрации сточной воды

Country Status (13)

Country Link
US (2) US5505862A (ru)
EP (1) EP0567601B1 (ru)
JP (1) JPH06508059A (ru)
KR (1) KR100251826B1 (ru)
AT (1) ATE110701T1 (ru)
AU (1) AU1900392A (ru)
DE (1) DE59200445D1 (ru)
DK (1) DK0567601T3 (ru)
ES (1) ES2063585T3 (ru)
PL (1) PL169970B1 (ru)
RU (1) RU2126366C1 (ru)
TW (1) TW201295B (ru)
WO (1) WO1992022506A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472716C2 (ru) * 2010-12-22 2013-01-20 Денис Геннадьевич Мищенко Способ очистки сточных вод посредством активированного ила во взвешенном состоянии и активационная очистительная установка для осуществления способа
RU2752684C1 (ru) * 2019-02-28 2021-07-29 Кэнон Кабусики Кайся Устройство формирования сверхмелких пузырьков
US11179652B2 (en) 2019-02-28 2021-11-23 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
RU2821251C1 (ru) * 2023-11-22 2024-06-18 Игорь Викторович Веженков Способ обезвоживания илового осадка и устройство для его осуществления

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306422A (en) * 1988-09-07 1994-04-26 Lenox Institute Of Water Technology, Inc. Compact clarifier system for municipal waste water treatment
US5993649A (en) * 1996-01-03 1999-11-30 Debusk; Thomas A. Sequential biological-chemical water treatment system
NL1004455C2 (nl) * 1996-11-06 1998-05-08 Pacques Bv Inrichting voor de biologische zuivering van afvalwater.
US6004463A (en) * 1997-03-10 1999-12-21 Swett; Thomas R. Waste water treatment system and method
EP1412293A4 (en) * 2000-10-06 2005-06-01 Premier Wastewater Internation APPARATUS AND METHOD FOR TREATING WASTEWATER BY THE IMPROVED SOLID REDUCTION (ESR) TECHNIQUE
WO2002100784A1 (en) * 2001-05-31 2002-12-19 Biothane Corporation Anaerobic digestion apparatus, methods for anaerobic digestion a nd for minimizing the use of inhibitory polymers in digestion
AT410405B (de) * 2001-09-17 2003-04-25 Andritz Ag Maschf Verfahren und vorrichtung zur abtrennung von störstoffen aus suspensionen durch flotation
US6620322B1 (en) * 2002-06-21 2003-09-16 Smith & Vesio Llc Apparatus and methods for purifying a waste influent material
DE10240667B4 (de) * 2002-09-04 2004-12-09 Uwe Sonnenrein Vorrichtung zur Anreicherung von Gas oder Gasmischungen in trinkbarem Wasser sowie Verfahren zur Anreicherung von Gas oder Gasmischungen in trinkbarem Wasser
GB0220478D0 (en) * 2002-09-04 2002-10-09 Paston Tanya Y Portable sewage treatment unit
DE10350502B3 (de) * 2003-10-29 2005-06-09 Herding Gmbh Filtertechnik Reaktor und Verfahren zur anaeroben Abwasserbehandlung
NZ548735A (en) * 2003-12-24 2009-03-31 Magnesium Tech Pty Ltd A system for water treatment
US7270750B2 (en) * 2005-04-08 2007-09-18 Ecofluid Systems, Inc. Clarifier recycle system design for use in wastewater treatment system
US7344643B2 (en) * 2005-06-30 2008-03-18 Siemens Water Technologies Holding Corp. Process to enhance phosphorus removal for activated sludge wastewater treatment systems
AU2006287178B2 (en) * 2005-09-02 2011-03-17 Evoqua Water Technologies Llc Screening of inert solids from a low-yield wastewater treatment process
AU2005338374A1 (en) * 2005-11-18 2007-05-24 Universidade Do Minho Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater
US7473364B2 (en) * 2006-03-07 2009-01-06 Siemens Water Technologies Corp. Multivalent metal ion management for low sludge processes
US8043094B2 (en) * 2006-07-10 2011-10-25 Jt & A, Inc. Model and method for simulating water treatment
DE102007041828A1 (de) * 2007-09-03 2009-03-05 Siemens Ag Vorrichtung und Verfahren zum Abbau von Schadstoffen in einer Flüssigkeit sowie Verwendung einer solchen Vorrichtung
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
CN101980969A (zh) 2008-03-28 2011-02-23 西门子水处理技术公司 需氧和厌氧混合废水和污泥处理系统和方法
US8685247B2 (en) * 2009-12-03 2014-04-01 Evoqua Water Technologies Llc Systems and methods for nutrient removal in biological treatment systems
US9272931B2 (en) 2010-01-13 2016-03-01 Biofilter Systems, Llc System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system
US8585892B2 (en) * 2010-01-13 2013-11-19 Biofilter Systems, Llc System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system
US8388833B2 (en) * 2010-09-23 2013-03-05 Biofilter Systems, Llc System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system
CN103402926A (zh) 2010-04-21 2013-11-20 西门子私人有限公司 废水处理系统和方法
US8808544B2 (en) 2010-08-18 2014-08-19 Evoqua Water Technologies Llc Contact-stabilization/prime-float hybrid
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
EP2450106B1 (de) * 2010-11-03 2016-06-01 Primetals Technologies Germany GmbH Flotationsapparat und Flotationsverfahren
US10131550B2 (en) 2013-05-06 2018-11-20 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
CN103539290A (zh) * 2013-11-08 2014-01-29 山东建筑大学 一种水体除藻装置
CN104003546B (zh) * 2014-04-24 2015-10-21 浙江海洋学院 一种便于维护的高效污水处理装置
CN104192932B (zh) * 2014-09-10 2015-10-28 无锡海拓环保装备科技有限公司 气泡层污水处理系统及处理方法
TWI648223B (zh) * 2015-10-29 2019-01-21 富鈞水資股份有限公司 污水處理監控系統
JP7315490B2 (ja) * 2020-01-27 2023-07-26 株式会社Ihi 消泡装置
CN111620516A (zh) * 2020-05-13 2020-09-04 安徽商贸职业技术学院 一种智能景观施工污水净化设施及方法
CN111825187B (zh) * 2020-08-13 2021-04-16 蒙城县十速信息科技有限公司 一种药物可自循环的节能环保污水处理装置
CN115572019A (zh) * 2022-11-09 2023-01-06 中国十七冶集团有限公司 一种大型钢筋混凝土异形多层次构件多功能养护装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1388554A (en) * 1971-05-25 1975-03-26 Swalesedge Ltd Apparatus for removing solids from a liquid
DE2129564A1 (de) * 1971-06-15 1972-12-21 Basf Ag Vorrichtung zum Begasen von Fluessigkeiten
CH546708A (de) * 1972-07-02 1974-03-15 Kaelin J R Verfahren und einrichtung zur reinigung von abwasser.
IN141354B (ru) * 1973-05-16 1977-02-19 Ici Ltd
GB1540723A (en) * 1975-05-07 1979-02-14 Carrier Drysys Ltd Treating waste paint solids
DE2550818C3 (de) * 1975-11-12 1978-05-18 Michael 6600 Saarbruecken Funk Verfahren und Vorrichtung zur biologischen Abwasserreinigung nach dem Schlammbelebungsverfahren
DE2843677C2 (de) * 1978-10-06 1982-12-02 Helmut 4030 Ratingen Steinmetzer Biologische Kleinkläranlage, insbesondere für häusliche Abwässer
DE3229960A1 (de) * 1982-08-12 1984-02-16 Erich Dr. 6380 Bad Homburg Asendorf Verfahren zur kombinierten mechanischen und biologischen reinigung
US4589927A (en) * 1984-05-29 1986-05-20 Battelle Development Corporation Liquid multisolid fluidized bed processing
US4545907A (en) * 1984-11-27 1985-10-08 Repin Boris N Aeration tank
US4931175A (en) * 1988-09-07 1990-06-05 Lenox Institute For Research, Inc. Water clarifying apparatus
US4976863A (en) * 1989-01-26 1990-12-11 Pec Research, Inc. Wastewater treatment process
US4898679A (en) * 1989-02-01 1990-02-06 Seymour Siegel Method and apparatus for obtaining ozone saturated water
CA2109436C (en) * 1991-05-01 2002-02-05 Level Valley Dairy Company Wastewater treatment system
JP2872829B2 (ja) * 1991-07-31 1999-03-24 オルガノ株式会社 超純水の製造のための曝気装置及び方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472716C2 (ru) * 2010-12-22 2013-01-20 Денис Геннадьевич Мищенко Способ очистки сточных вод посредством активированного ила во взвешенном состоянии и активационная очистительная установка для осуществления способа
RU2752684C1 (ru) * 2019-02-28 2021-07-29 Кэнон Кабусики Кайся Устройство формирования сверхмелких пузырьков
US11179652B2 (en) 2019-02-28 2021-11-23 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
RU2763546C2 (ru) * 2019-02-28 2021-12-30 Кэнон Кабусики Кайся Способ генерирования ультрамелких пузырьков, устройство генерирования ультрамелких пузырьков и содержащая ультрамелкие пузырьки жидкость
RU2821251C1 (ru) * 2023-11-22 2024-06-18 Игорь Викторович Веженков Способ обезвоживания илового осадка и устройство для его осуществления

Also Published As

Publication number Publication date
EP0567601B1 (de) 1994-08-31
TW201295B (ru) 1993-03-01
WO1992022506A1 (de) 1992-12-23
KR100251826B1 (ko) 2000-04-15
AU1900392A (en) 1993-01-12
JPH06508059A (ja) 1994-09-14
ATE110701T1 (de) 1994-09-15
ES2063585T3 (es) 1995-01-01
KR940701365A (ko) 1994-05-28
DE59200445D1 (de) 1994-10-06
EP0567601A1 (de) 1993-11-03
PL169970B1 (pl) 1996-09-30
US5505862A (en) 1996-04-09
DK0567601T3 (da) 1995-04-10
US5616240A (en) 1997-04-01

Similar Documents

Publication Publication Date Title
RU2126366C1 (ru) Способ и устройство для очистки сточных вод, устройство для аэрации сточной воды
AU654110B2 (en) Improved water clarifying apparatus
US20020050468A1 (en) Mixing unit for a system for separating algae and other contaminants from a water stream
KR100404716B1 (ko) 액체로부터 비용해 입자를 분리하기 위한 방법 및 장치
MX2012005241A (es) Método de optimizar la concentración de alimento en un recipiente de sedimentación.
JP2007029801A (ja) 固液分離装置および固液分離システム
JPH08173708A (ja) 流れの分離を伴う連続縦沈降機
US5188729A (en) Sludge collection apparatus for a water clarifier
US5344563A (en) Wastewater treatment system
US3481868A (en) Water clarifier and water clarification method
US3846291A (en) Process of and installation for purifying sewage
US6719911B2 (en) Apparatus and method for the treatment of a contaminated fluid
EP0873278B1 (en) Method for adding oxygen to water
JP2004113940A (ja) 移動床式ろ過装置及びその運転方法
KR100954264B1 (ko) 슬러지 배출 장치
WO2001005708A1 (en) A process and a plant for purifying of a liquid
US2559462A (en) Method and apparatus for separating oxidizable materials from liquids by oxygenation and aerobic biochemical action
CA2084647A1 (en) Water clarifying apparatus
CA2143502C (en) Process and device for purifying sewage
RU2046765C1 (ru) Гидроциклонный аэротенк-вытеснитель и аэрирующее устройство
US3302792A (en) Hikes etal clarifying apparatus
RU2206370C1 (ru) Устройство для очистки жидкости
HU187368B (en) Flotatig the flotative contaminations being sewage by expanding gas absorbed in water
HU196138B (en) Reactor for educing the solid phase from liquid particularly for carrying out coagulation cleaning and/or precipitation water softening operations