RU2123635C1 - Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов - Google Patents

Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов Download PDF

Info

Publication number
RU2123635C1
RU2123635C1 RU97108009A RU97108009A RU2123635C1 RU 2123635 C1 RU2123635 C1 RU 2123635C1 RU 97108009 A RU97108009 A RU 97108009A RU 97108009 A RU97108009 A RU 97108009A RU 2123635 C1 RU2123635 C1 RU 2123635C1
Authority
RU
Russia
Prior art keywords
gas
generator
fuel
gas generator
burner
Prior art date
Application number
RU97108009A
Other languages
English (en)
Other versions
RU97108009A (ru
Inventor
Л.В. Зысин
Анатолий Семенович Савус
В.Н. Моршин
И.Я. Мароне
Original Assignee
Зысин Леонид Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зысин Леонид Владимирович filed Critical Зысин Леонид Владимирович
Priority to RU97108009A priority Critical patent/RU2123635C1/ru
Application granted granted Critical
Publication of RU2123635C1 publication Critical patent/RU2123635C1/ru
Publication of RU97108009A publication Critical patent/RU97108009A/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

Изобретение предназначено для газификации сельскохозяйственных отходов с последующим сжиганием полученного генераторного газа в котельных установках. Установка содержит газогенератор, котел с топочной камерой, трубопровод подачи генераторного газа из газогенератора к горелке топочной камеры котла, воздухопроводы подачи воздуха в камеру газификации и в топочную камеру, трубопровод подачи водяного пара в газогенератор. Трубопровод подачи генераторного газа снабжен клапаном-отсекателем и подсоединен к трубопроводу подачи водяного пара дополнительным трубопроводом, в котором установлены запорные электромагнитные клапаны и разрывная мембрана, срабатывающая под действием давления пара. Газогенератор содержит герметичный корпус, патрубок отвода, генераторного газа, узел загрузки топлива. Узел загрузки включает приемный бункер и винтовой подающий питатель с приводом. Подающий питатель имеет части длины, переменные, плавно уменьшающиеся в сторону выходного отверстия питателя, диаметр и шаг витков. Приемный бункер имеет форму наклонного лотка с разнесенными в вертикальной плоскости друг от друга входным и выходным отверстиями, при этом стенка бункера, находящаяся под его входным отверстием, наклонена к плоскости входного отверстия питателя под углом, превышающим на 3-5o угол естественного откоса используемого топлива. Газогенератор в верхней части выполнен в форме усеченного конуса и снабжен датчиком уровня слоя топлива, функционально связанным с приводом подающего питателя. Минимально допустимая высота свободного пространства в газогенераторе между верхним уровнем слоя топлива и патрубком отвода генераторного газа определяется из соотношения Н ≥ Х , где Н - высота свободной зоны, а Х - высота выброса частиц топлива из его слоя, м, определяемая по формуле
Figure 00000001

где
Figure 00000002

W - средняя скорость газа над слоем топлива, м/с;
Wтн - начальная скорость частиц, м/с;
q - ускорение силы тяжести, м/с2;
γ - плотность газа кг/м3;
ν - кинематическая вязкость газа, м2/с;
γT - кажущаяся плотность частиц, кг/м3;
dт - диаметр частиц, м.
Устройство позволяет более эффективно использовать процесс термической переработки растительной биомассы в газообразное топливо и обеспечивает надежную работу газогенератора в составе энерготехнологической установки. 2 с. и 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к энерготехнологическому оборудованию и может быть использовано для газификации растительной биомассы, преимущественно сельскохозяйственных отходов, таких как лузга семян подсолнечника, кочерыжка кукурузы, а также щепы, коры, опилок, торфа, с последующим сжиганием полученного генераторного газа в топочных камерах.
Известна энерготехнологическая установка, содержащая газогенератор с закалочной шлаковой камерой и котел с топкой, при этом установка снабжена трубопроводом с регулирующим клапаном, вход которого подсоединен к закалочной шлаковой камере, а выход - к топке котла [1]. К недостаткам известной установки относится то, что в процессе работы вместе с отводимым газом из газогенератора происходит вынос большого количества несгоревших мелких частиц, что отрицательно сказывается на работе котла.
Известна энерготехнологическая установка, содержащая газогенератор слоевого типа, котел с топочной камерой, трубопровод подачи генераторного газа из газогенератора к горелке топочной камеры котла, трубопроводы подачи воздуха в газогенератор и в топочную камеру котла, трубопровод подачи водяного пара в газогенератор [2].
Известен газогенератор слоевого типа, содержащий газоплотный корпус с размещенными в верхней его части патрубком отвода газа и узлом загрузки твердого топлива, включающим приемный бункер и подающий питатель с приводом, размещенную в нижней части газогенератора вращающуюся колосниковую решетку, устройство для выгрузки золы, средства подвода в газогенератор дутьевого воздуха и водяного пара [2].
В известной установке генераторный газ, транспортируемый к горелке топочной камеры, содержит пары смолы, пирогенной влаги, пылевидные частицы, что оказывает неблагоприятное воздействие на элементы запорной арматуры, устанавливаемой на газопроводе, снижая надежность их в работе, особенно в случаях, когда необходимо быстрое отключение газогенератора от котла.
В известном газогенераторе в процессе термической переработки твердого топлива в генераторный газ, часть топлива в виде мелких частиц, находящихся в верхнем слое, захватывается генераторным газом и уносится в топку котла, что отрицательно сказывается на его работе. Кроме того, при загрузке топлива в газогенератор, находящийся под избыточным давлением, происходит утечка генераторного газа в окружающую среду через узел загрузки топлива.
Задачей настоящего изобретения является повышение надежности и безопасности работы энерготехнологической установки, а также повышение эффективности работы газогенератора путем обеспечения более полной термической переработки топлива в газогенераторе и исключения утечек генераторного газа в процессе загрузки газогенератора топливом.
Поставленная задача решается тем, что в энерготехнологической установке, включающей газогенератор слоевого типа, котел с топочной камерой и горелкой для сжигания генераторного газа, трубопровод подачи генераторного газа к горелке, трубопроводы подачи воздуха в газогенератор и в горелку, трубопровод подачи водяного пара в газогенератор, трубопровод подачи генераторного газа в горелку снабжен клапаном-отсекателем, а трубопровод подачи водяного пара в газогенератор снабжен электромагнитным клапаном и подсоединен дополнительным трубопроводом к трубопроводу подачи генераторного газа после клапана-отсекателя, при этом дополнительный трубопровод выполнен с ответвлением, подсоединенным к трубопроводу подачи генераторного газа, на дополнительном трубопроводе и его ответвлении установлены электромагнитные клапаны, а в ответвлении дополнительного трубопровода между электромагнитным клапаном и местом соединения с трубопроводом подачи генераторного газа установлена разрывная мембрана.
Кроме того, трубопроводы подачи воздуха в газогенератор и к горелке для сгорания генераторного газа снабжены регулировочными задвижками, функционально связанными между собой и с электромагнитными клапанами, установленными на дополнительном трубопроводе и его ответвлении.
Кроме того, горелка для сжигания генераторного газа размещена в топочной камере под штатными горелками, подключенными к источнику жидкого, или пылевидного, или газообразного топлива.
Поставленная задача решается также тем, что в газогенераторе слоевого типа, содержащем герметичный корпус, размещенные в верхней части корпуса патрубок отвода газа и узел загрузки топлива, включающий приемный бункер и винтовой питатель с приводом, размещенную в нижней части корпуса колосниковую решетку, установленную с возможностью вращения, устройство для выгрузки и сбора золы, размещенное под колосниковой решеткой, средства подвода в газогенератор дутьевого воздуха и водяного пара, винтовой питатель выполнен с цилиндрической заборной и конической напорной частями, причем шаг витков в заборной части составляет 0,8 диаметра витков заборной части, напорная часть выполнена из трех витков с переменным плавно уменьшающимся в сторону выходного отверстия питателя шагом, составляющим соответственно 0,7; 0,6 и 0,5 диаметра витков заборной части, и отношение транспортных площадей входа и выхода напорной части питателя составляет 2,3-2,5, при этом приемный бункер имеет форму лотка с разнесенными в вертикальной плоскости друг от друга входным и выходным отверстиями, а стенка бункера, расположенная под его входным отверстием, наклонена к плоскости входного отверстия питателя под углом, превышающим на 3-5o угол естественного откоса топлива, кроме того газогенератор в верхней части выполнен в форме усеченного конуса и снабжен датчиком уровня слоя топлива в нем, функционально связанным с приводом подающего питателя, причем минимально допустимая высота свободного пространства в газогенераторе между верхним уровнем слоя топлива и патрубком отвода газов определяется из соотношения H≥X, где H - высота свободной зоны между уровнем топлива и отверстием в патрубке для выхода генераторного газа, X - максимальная высота выброса частиц топлива из его слоя под воздействием генераторного газа,
Figure 00000006

где
Figure 00000007

W - средняя скорость газа над слоем топлива, м/с;
Wтн - начальная скорость частиц, м/с;
q - ускорение силы тяжести, м/с2;
γ - плотность газа, кг/м3;
ν - кинематическая вязкость газа, м2/с;
γT - кажущаяся плотность частиц, кг/м3;
dт - диаметр частиц, м.
На чертеже представлена схема энерготехнологической установки с газогенератором слоевого типа.
Энерготехнологическая установка включает в себя газогенератор 1, сообщенный трубопроводом 2 с горелкой 3 топочной камеры 4 котла 5. В топочной камере 4 над горелкой 3 установлена горелка 6, соединенная трубопроводом 7 с источником подачи штатного топлива - жидкого, пылевидного, газообразного. Горелки 3, 6 подсоединены посредством трубопровода 8 к источнику подачи воздуха.
Газогенератор 1 содержит вертикально расположенный корпус 9 с герметично уплотненной камерой газификации 10, имеющий в верхней части форму усеченного конуса. Сверху на корпусе имеется патрубок 11, сообщенный трубопроводом 2 с горелкой 3 топочной камеры, и размещен узел загрузки топлива в газогенератор, включающий винтовой питатель 12 с приводом 13, приемный бункер 14, сообщенный скребковым транспортером 15 с промежуточным бункером 16, ворошитель топлива 17 с приводом 18. Винтовой питатель 12 имеет цилиндрическую заборную и коническую напорную части. Шаг витков в заборной части составляет 0,8 диаметра ее витков, напорная часть содержит 3 витка с переменным, плавно уменьшающимся в сторону выходного отверстия питателя шагом, составляющим соответственно 0,7; 0,6 и 0,5 диаметра витков заборной части. Отношение транспортных площадей входа и выхода напорной части питателя составляет 2,3-2,5. Приемный бункер 14 выполнен в виде лотка с разнесенными друг от друга в вертикальной плоскости входным 19 и выходным 20 отверстиями. Стенка 21 лотка, расположенная под входным отверстием 19, наклонена к плоскости входного отверстия 22 питателя под углом aльфа, на 3-5o превышающем угол естественного откоса используемого топлива.
Патрубок 1 сообщен трубопроводом 23 через регулируемую задвижку 24 с трубой 25 сброса газа из газогенератора.
В нижней половине газогенератора расположен фурменный пояс, включающий равномерно размещенные по окружности корпуса фурмы 26, соединенные трубопроводом 27 с воздуходувкой 28 и трубопроводом 29 с источником подачи водяного пара давлением 3 атм. Трубопроводы 27, 29 снабжены регулировочной задвижкой 30 и электромагнитным клапаном 31 соответственно.
Внизу газогенератора установлена с возможностью вращения от привода 32 колосниковая решетка 33 с насадкой 34, соединенной трубопроводом 35 с источником подачи водяного пара и с трубопроводом 27 подачи дутьевого воздуха. В днище 36 корпуса газогенератора выполнены два отверстия 37, сообщающие подколосниковую зону с бункерами золы 38, которые через шиберные затворы 39 и скребковый транспортер 40 соединены с контейнером золы 41.
В верхней части газогенератора установлен датчик 42 уровня топлива, функционально связанный с приводом 13 винтового питателя.
Трубопровод 2 соединен трубопроводом 43 с трубопроводом 29 подачи водяного пара к фурмам. На трубопроводе 2 установлен клапан-отсекатель 44, а трубопровод 43 выполнен с ответвлением 45. На трубопроводе 43 установлен быстродействующий электромагнитный клапан 46, а на трубопроводе 45 последовательно установлены быстродействующий электромагнитный клапан 47 и разрывная мембрана 48.
На трубопроводе 8 подвода воздуха к горелкам топочной камеры установлены регулировочные задвижки 49, 50. Регулировочные задвижки 30, 49 функционально связаны между собой и с электромагнитными клапанами 31, 47.
Энерготехнологическая установка с газогенератором работают следующим образом.
Посредством винтового питателя загружают твердым топливом газогенератор, в котором происходит процесс термической переработки топлива в горючий газ, при этом топливо перемещается в камеру сверху вниз, а навстречу ему движется образующийся газ. В процессе опускания топлива оно последовательно проходит зоны подсушки топлива, термического разложения, восстановления, и горения, при этом в первых двух зонах происходит подготовка топлива, включающая его высушивание и термолиз, а в двух последующих - газификация топлива. Для проведения процесса газификации в газогенератор подается через фурмы и колосниковую решетку дутьевой воздух и водяной пар. Поднимающийся из зон горения и восстановления газ, нагревает опускающееся топливо и проводит его термическое разложение (термолиз), сопровождающееся выделением паров смолы, пирогенной влаги, неконденсирующихся горючих и негорючих газов. Поднимаясь далее, газ, включающий летучие продукты газификации и термолиза, подсушивает топливо, что сопровождается выделением водяных паров.
В результате при выходе из камеры газификации генераторный газ содержит газы из зоны газификации (CO, H2, CO2, N2), из зоны термолиза (CO2, CO, CH4, CnHn, H2О, пары смол) и пары воды из зоны сушки.
В процессе работы газогенератора топливо периодически или непрерывно, в зависимости от режима работы, загружается в камеру газификации, при этом для равномерного распределения топлива по сечению камеры, верхний слой его постоянно разравнивается ворошителем. Камера газификации находится под избыточным давлением 200 мм вод.ст.
Выполнение части винтового питателя с переменным, уменьшающимся к выходному отверстию питателя диаметром, обеспечивает создание на выходе питателя пробки из топлива, достаточной для предотвращения утечки генераторного газа через узел загрузки топлива. В то же время принятые величины соотношений шага витков с их диаметром и транспортных площадей входа и выхода напорной части питателя позволяют подавать топливо в камеру газификации не разрушая структуры топлива.
Устойчивый и равномерный, без зависания сход топлива из бункера в питатель обеспечивается выполнением бункера в форме лотка с разнесенными в вертикальной плоскости входным и выходным отверстиями и наклоном стенки бункера, расположенной под входным отверстием, на 3-5o превышающем угол естественного схода топлива (например, для лузги подсолнечника угол естественного схода топлива составляет 46o).
Для того, чтобы вместе с генераторным газом в трубопровод 2 через отверстие в патрубке 11 не выбрасывались частицы топлива, высота свободной зоны в камере газификации между уровнем топлива и отверстием в патрубке выбрана из расчета высоты выброса частиц из слоя топлива под воздействием выходящего вверх из слоя топлива газа, а именно H≥X, где H - высота свободной зоны между уровнем топлива и отверстием в патрубке для выхода генераторного газа, X - максимальная высота выброса частиц топлива из его слоя под воздействием генераторного газа
Figure 00000008

где
Figure 00000009

W - средняя скорость газа над слоем топлива, м/с;
Wтн - начальная скорость частиц, м/с;
q - ускорение силы тяжести, м/с2;
γ - плотность газа, кг/м3;
ν - кинематическая вязкость газа, м2/с;
γT - кажущаяся плотность частиц, кг/м3;
dт - диаметр частиц, м.
При достижении верхнего слоя топлива в камере газификации уровня, при котором высота свободной зоны H становится равной величине X, датчик 42 уровня выдает сигнал на отключение привода питателя, и топливо в камеру газификации перестает поступать.
Образующийся генераторный газ через патрубок 11 и трубопровод 2 подается к газовой горелке в топочной камере котла. Различные режимы работы газогенератора и установки в целом регулируются посредством установленных на трубопроводах 27 и 8 регулировочных задвижек 30, 49, изменяющих расход дутьевого воздуха, подаваемого в газогенератор и в топочную камеру котла. При необходимости быстрого отключения газогенератора от котла, открывают запорный электромагнитный клапан 46 и пар подается в трубопровод 2, создавая в нем паровую завесу и отсекая газогенератор от топочной камеры котла. Последующее полное перекрытие трубопровода 2 обеспечивается клапаном-отсекателем 44. В случае отключения питания от энерготехнологической установки, клапаны 31 и 47 обесточиваются, при этом клапан 31 закрывается, а клапан 47 открывается, и в результате скачка давления в трубопроводе 45 происходит разрыв мембраны 48, что обеспечивает создание паровой завесы в трубопроводе 2 на время перекрытия его посредством клапана-отсекателя 44.
Быстродействие электромагнитных клапанов обеспечивает мгновенное заполнение трубопровода 2 паром, что предохраняет установку от возможного хлопка в топке.
Повышение эффективности и безопасности работы энерготехнологической установки обеспечивается также функциональной связью регулировочных задвижек на трубопроводах подачи воздуха в газогенератор и в горелку между собой и с электромагнитными клапанами на трубопроводах подачи водяного пара.
Количество вырабатываемого генераторного газа при фиксированных характеристиках топлива и расхода пара в газогенератор полностью определяется расходом воздуха, подаваемого в газогенератор, и регулируется клапаном на воздухопроводе. Например, при газификации лузги подсолнечника подача 1 м3 воздуха приводит к образованию ≈1,8 м3 генераторного газа. Для сжигания этого количества газа необходимо ≈1,8-2 м3 воздуха, которое регулируется клапаном на трубопроводе подачи воздуха в горелку. Данная связь реализуется в энерготехнологической установке исполнительными механизмами и обеспечивает полноту сгорания генераторного газа. При закрытии регулировочных клапанов на воздухопроводах к газогенератору или горелке открывается клапан на трубопроводе подачи пара в трубопровод генераторного газа, что обеспечивает заполнение трубопровода генераторного газа и топочной камеры паром на время срабатывания отсечного клапана на газопроводе. Этим достигается безопасность при остановке энерготехнологической установки.
При совместном сжигании генераторного газа с другими видами топлива (мазут, природный газ) горелка генераторного газа располагается под штатными горелками для гарантированного сжигания генераторного газа при снижении его калорийности, например, из-за увеличения влажности перерабатываемого топлива.
Применение изобретения позволяет более эффективно использовать процесс термической переработки растительной биомассы в газообразное топливо и обеспечить надежную работу газогенератора в составе энерготехнологической установки.
Источники информации
1. Авторское свидетельство СССР N 1154314, C 10 J 3/86.
2. E. Kurkela, P. Stahlberg, P. Simell & J. Leppalahti. Updraft Gasification of Peat and Biomass, Technical Research Centre of Finland, Laboratory of Fuel Processiry Technology, 02150, Espoo, Finland, Biomass 19(1989), p. 37-46.

Claims (4)

1. Энерготехнологическая установка, включающая газогенератор слоевого типа, котел с топочной камерой, содержащей горелку для сжигания генераторного газа, трубопровод подачи генераторного газа к горелке топочной камеры, трубопроводы подачи воздуха в газогенератор и к горелке топочной камеры, трубопровод подачи водяного паза в газогенератор, отличающаяся тем, что трубопровод подачи генераторного газа к горелке топочной камеры снабжен клапаном-отсекателем, а трубопровод подачи водяного пара в газогенератор снабжен электромагнитным клапаном и подсоединен дополнительным трубопроводом к трубопроводу подачи генераторного газа после клапана-отсекателя, при этом дополнительный трубопровод выполнен с ответвлением, подсоединенным к трубопроводу подачи генераторного газа, на дополнительном трубопроводе и его ответвлении установлены электромагнитные клапаны, а в ответвлении дополнительного трубопровода между электромагнитным клапаном и местом подсоединения к трубопроводу подачи генераторного газа установлена разрывная мембрана.
2. Установка по п.1, отличающаяся тем, что трубопроводы подачи воздуха в газогенератор и к горелке для сжигания генераторного газа снабжены регулировочными задвижками, функционально связанными между собой и с электромагнитными клапанами, установленными на дополнительном трубопроводе и его ответвлении.
3. Установка по пп.1 и 2, отличающаяся тем, что горелка для сжигания генераторного газа размещена в топочной камере под штатными горелками, подключенными к источнику жидкого, или пылевидного, или газообразного топлива.
4. Газогенератор слоевого типа, содержащий герметичный корпус, размещенные в верхней части корпуса патрубок отвода газа и узел загрузки топлива, включающий приемный бункер и винтовой питатель с приводом, размещенную в нижней части корпуса колосниковую решетку, установленную с возможностью вращения, устройство для выгрузки и сбора золы, размещенное под колосниковой решеткой, средства подвода в газогенератор дутьевого воздуха и водяного пара, отличающийся тем, что винтовой питатель выполнен с цилиндрической заборной и конической напорной частями, причем шаг витков в заборной части составляет 0,8 диаметра ее витков, напорная часть выполнена из трех витков с переменным плавно, уменьшающимся в сторону выходного отверстия питателя шагом, составляющим соответственно 0,7; 0,6 и 0,5 диаметра витков заборной части, а отношение транспортных площадей входа и выхода напорной части питателя составляет 2,3 - 2,5, при этом приемный бункер имеет форму лотка с разнесенными в вертикальной плоскости друг от друга входным и выходным отверстиями, а стенка бункера, расположенная под его входным отверстием, наклонена к плоскости входного отверстия питателя под углом, превышающим на 3 - 5o угол естественного откоса топлива, кроме того, газогенератор в верхней части выполнен в форме усеченного конуса и снабжен датчиком уровня слоя топлива в нем, функционально связанным с приводом подающего питателя, причем минимально допустимая высота H свободного пространства в газогенераторе между верхним уровнем слоя топлива и патрубком отвода газов выбрана из условия H ≥ Х, где X - максимальная высота выброса частиц топлива из его слоя под воздействием генераторного газа, определяемая по формуле
Figure 00000010

Figure 00000011

где W - средняя скорость газа над слоем топлива, м/с;
Wтн - начальная скорость частиц, м/с;
q - ускорение силы тяжести, м/с2;
γ - плотность газа, кг/м2;
ν - кинематическая вязкость газа, м2/с;
γт- кажущаяся плотность частиц, кг/м3;
dт - диаметр частиц, м.
RU97108009A 1997-05-08 1997-05-08 Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов RU2123635C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97108009A RU2123635C1 (ru) 1997-05-08 1997-05-08 Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97108009A RU2123635C1 (ru) 1997-05-08 1997-05-08 Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов

Publications (2)

Publication Number Publication Date
RU2123635C1 true RU2123635C1 (ru) 1998-12-20
RU97108009A RU97108009A (ru) 1999-04-10

Family

ID=20193007

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97108009A RU2123635C1 (ru) 1997-05-08 1997-05-08 Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов

Country Status (1)

Country Link
RU (1) RU2123635C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486228C2 (ru) * 2007-10-10 2013-06-27 Лурджи Клин Коул Текнолоджи (Пропрайэтри) Лимитед Газогенератор для газификации гранулированного твердого топлива под давлением
RU2555486C2 (ru) * 2013-07-11 2015-07-10 Андрей Владимирович Палицын Газогенератор
RU188334U1 (ru) * 2018-11-29 2019-04-08 Марк Семенович Солонин Горелка газифицирующая
WO2020111974A3 (ru) * 2018-11-29 2020-07-23 Марк СОЛОНИН Горелка газифицирующая
RU2762202C1 (ru) * 2021-03-31 2021-12-16 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ безмазутной растопки паровых и водогрейных котлов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU 2036375 1995. E. KurKela, P.Stahlberg, P.Simell & I.Leppalahti. Updraft Gasification of Peat and Biomass. Technical Research Centre of Tinland, Laboratory of Fuel Processiry Technologi, 02150, Espoo, Finland, Biomass, 19 (1989), p.37 - 46. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486228C2 (ru) * 2007-10-10 2013-06-27 Лурджи Клин Коул Текнолоджи (Пропрайэтри) Лимитед Газогенератор для газификации гранулированного твердого топлива под давлением
RU2555486C2 (ru) * 2013-07-11 2015-07-10 Андрей Владимирович Палицын Газогенератор
RU188334U1 (ru) * 2018-11-29 2019-04-08 Марк Семенович Солонин Горелка газифицирующая
WO2020111974A3 (ru) * 2018-11-29 2020-07-23 Марк СОЛОНИН Горелка газифицирующая
RU2762202C1 (ru) * 2021-03-31 2021-12-16 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ безмазутной растопки паровых и водогрейных котлов

Similar Documents

Publication Publication Date Title
US6485296B1 (en) Variable moisture biomass gasification heating system and method
CA1160104A (en) Fluidized-bed process to convert solid wastes to clean energy
EP0513440A2 (en) Hot gas generation system for producing combustible gases for a burner from particulate solid organic biomass material
CA2530236A1 (en) High efficiency cyclone gasifying combustion burner to produce thermal energy and devices and method of operation
CN206396129U (zh) 一种生物质碎料密实气化装置
CN104981658B (zh) 气化燃烧系统
JPS59229107A (ja)
CN106918039A (zh) 一种生物质成型燃料固相低温、气相高温燃烧装置
RU2123635C1 (ru) Энерготехнологическая установка с газогенератором и газогенератор для газификации органосодержащих отходов
AU2008314209B2 (en) Gas generator for gasifying solid granular fuels by applying pressure
JP6526499B2 (ja) バーナ
JPS6294705A (ja) 原動所での流動化ベツドによるベツド高さ制御方法及びベツド高さ制御装置を有する原動所
CN1013926B (zh) 利用辐射源控制悬浮密度
RU2307864C1 (ru) Установка для газификации твердого топлива
JPH0814531A (ja) 固体燃焼物の供給装置
CN101967401A (zh) 生物质气化炉密闭排渣装置及生物质气化反应系统
WO2004094568A2 (en) Pressurized coal gasification fuel distribution, feed, and burner system
JP4209701B2 (ja) 可燃物のガス化方法及び装置並びにガス化溶融システム
CN109477009A (zh) 一种气体的产品及方法
EP0966635B1 (en) Plant and method for incineration of industrial and household waste and sludge
RU74918U1 (ru) Установка для конверсии твердого топлива (варианты)
CN201857373U (zh) 生物质气化炉密闭排渣装置及生物质气化反应系统
RU97108009A (ru) Энерготехнологическая установка с газогенератором и газогенератором для газификации органосодержащих отходов
TWI801433B (zh) 用於燃料氣體生產及燃燒的裝置
JP6994211B1 (ja) 高温ガス生成装置および高温ガス生成方法