RU2122963C1 - Система управления двухдвигательного самолета посредством управления вектором тяги - Google Patents

Система управления двухдвигательного самолета посредством управления вектором тяги Download PDF

Info

Publication number
RU2122963C1
RU2122963C1 RU98104220A RU98104220A RU2122963C1 RU 2122963 C1 RU2122963 C1 RU 2122963C1 RU 98104220 A RU98104220 A RU 98104220A RU 98104220 A RU98104220 A RU 98104220A RU 2122963 C1 RU2122963 C1 RU 2122963C1
Authority
RU
Russia
Prior art keywords
output
nozzles
input
angle
corrector
Prior art date
Application number
RU98104220A
Other languages
English (en)
Other versions
RU98104220A (ru
Inventor
М.П. Симонов
Original Assignee
Акционерное общество открытого типа "ОКБ Сухого"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "ОКБ Сухого" filed Critical Акционерное общество открытого типа "ОКБ Сухого"
Priority to RU98104220A priority Critical patent/RU2122963C1/ru
Application granted granted Critical
Publication of RU2122963C1 publication Critical patent/RU2122963C1/ru
Publication of RU98104220A publication Critical patent/RU98104220A/ru

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

Изобретение относится к системам управления самолетов. Система содержит поворотные сопла двигателей, с которыми соединены функциональные блоки, связанные последовательно между собой. Имеются вычислители продольного и путевого управления, датчики углов атаки, скоростного напора и высоты, корректор усиления по углу атаки, усилители продольного и путевого каналов и др. В систему введены корректоры по скоростному напору и высоте, а также устройства выбора минимального сигнала, что повышает ее надежность. Отклонение сопел происходит в ограниченном диапазоне скоростных напоров и высот, что повышает ресурс сопел. 3 ил.

Description

Изобретение относится к системам управления самолетов посредством изменения вектора тяги.
Из патентной литературы известны устройства для управления летательным аппаратом (см. например, заявки ФРГ N 3222674, кл. В 64 С 15/02, 22.12.83, N 3609457, кл. В 64 С 15/02, 25.09.86, N 3909347/А1, кл. В 64 С 15/02, 27.09.90).
Также известна система управления самолетов, применяемая на демонстрационном самолете F-15 S МТД (см. Техническая информация ЦАГИ, N 8, 1987, с. 11-13).
В этой системе продольный момент для управления самолета создается отклонением вектора тяги обоих двигателей вверх или вниз при помощи поворота створок в расширяющейся части сопла, поперечный - отклонением вектора тяги одного двигателя вверх, а другого вниз, путевой - уменьшением осевого составляющей одного двигателя и увеличением другого при помощи створок в сужающейся части сопла и поворотом створок решетки, расположенной там же.
Наиболее близким аналогом, рассматриваемым в качестве прототипа, является система управления двухдвигательного самолета, описанная в патенте РФ N 2084375, кл. В 64 С 15/02, опубл. 20.07.97.
В этой системе сигналы датчиков органов управления и угловых скоростей поступают в вычислительные устройства, формирующие требуемые отклонения вектора тяги обоих двигателей вокруг горизонтальной оси, что обеспечивает создание управляющих моментов по крену и тангажу. Момент рысканья создается за счет изменения подачи топлива в каждый двигатель. Указанная система имеет ряд недостатков.
Из-за того, что сигналы датчиков перемещений ручки и датчиков угловых скоростей поступают непосредственно на приводы поворотных сопел, сопла непрерывно перемещаются, в результате чего быстро вырабатывается ресурс сопла, что приводит к необходимости ремонта или замены створок сопла в процессе эксплуатации.
Отсутствие ограничений работы сопла по скоростному напору приводит к тому, что сопло перемещается при полетах на тех скоростных напорах, где эффективность аэродинамических поверхностей достаточна и управление при помощи вектора тяги не требуется. Это также приводит к преждевременной выработке ресурса и снижению надежности работы системы. Сопло отклоняется на больших высотах, где из-за пониженной теплоотдачи происходит перегрев и разрушение створок.
Создание момента рысканья путем изменения подачи топлива в тех случаях, когда маневр выполняется при максимальной тяге обоих двигателей, приводит к уменьшению величины полной тяги, что снижает эффективность маневра.
Задачей изобретения является создание системы управления самолетом с помощью вектора тяги, которая не имеет перечисленных выше недостатков.
Технический результат достигается тем, что в систему управления двухдвигательного самолета, содержащую вычислители продольного и путевого управления аэродинамическими поверхностями, электрогидравлические приводы правого и левого сопла, электрические сумматоры правого и левого сопла, датчики углов атаки, скоростного напора и высоты, дополнительно введены поворотные сопла, оси вращения которых расположены под углом к горизонтальной плоскости самолета, корректор усиления по углу атаки, первый вход которого соединен с выходом вычислителя продольной системы управления аэродинамическими поверхностями, а второй вход с выходом датчика угла атаки, электронный усилитель, прямой вход которого соединен с выходом вычислителя продольного управления, а инвертирующий вход с выходом корректора усиления по углу атаки, нелинейный усилитель продольного канала, вход которого соединен с выходом электронного усилителя, суммирующий усилитель, первый вход которого соединен с выходом корректора усиления по углу атаки, второй вход с выходом нелинейного усилителя продольного канала, а выход с прямыми входами электрических сумматоров правого и левого сопла, нелинейный усилитель путевого канала, вход которого соединен с выходом вычислителя путевого канала, а выход с вторым прямым входом электрического сумматора правого сопла и инвертирующим входом электрического сумматора левого сопла, корректор по скоростному напору и корректор по высоте правого сопла, корректор по скоростному напору и корректор по высоте левого сопла, первые входы которых соединены соответственно с выходами электрических сумматоров правого и левого сопла, а вторые входы с датчиками скоростного напора и высоты, устройства выбора минимального сигнала правого и левого сопла, первые входы которых соединены с выходами корректоров скоростного напора правого и левого сопел, вторые входы с выходами корректоров по высоте, а выходы со входами правого и левого электрогидравлических приводов, выходы которых соединены с поворотными соплами правого и левого двигателей.
На фиг. 1 - представлена блок-схема предлагаемой системы; на фиг. 2 - изображена структурная схема системы; на фиг. 3 - изображена схема расположения сопел.
Система содержит поворотные сопла правого и левого двигателей, оси вращения которых установлены под углом горизонтальной плоскости самолета 21, 22, вычислитель 1 продольного управления, вычислитель 2 путевого управления, электрогидравлические приводы 17 и 18 правого и левого сопла, электрические сумматоры 9 и 10 правого и левого сопла, датчики 3, углов атаки, датчики 19 и 20 скоростного напора и высоты, корректор 5 усиления по углу атаки, нелинейный усилитель 4 путевого канала, электронный усилитель 6, нелинейный усилитель 7 продольного канала, суммирующий усилитель 8, корректоры 13, 14 по высоте, корректоры 11, 12 по скоростному напору, устройство 15, 16 выбора минимального сигнала, электрогидравлические приводы 17, 18 правого и левого сопла. При этом выход вычислителя продольного управления 1 соединен с прямым входом электронного усилителя 6 и с первым входом корректора 5 усиления по углу атаки, вход которого соединен с выходом датчика 3 угла атаки, а выход с инвертирующим входом электронного усилителя 6 и с первым входом суммирующего усилителя 8. Выход электронного усилителя 6 соединен с входом нелинейного усилителя 7 продольного канала, выход которого соединен со вторым входом суммирующего усилителя 8. Выход вычислителя 2 путевого управления соединен с входом нелинейного усилителя 4 путевого канала, выход которого соединен со вторым прямым входом электрического сумматора 9 правого сопла и инвертирующим входом электрического сумматора 10 левого сопла, прямой вход которого соединен с выходом суммирующего усилителя 8. С этим же выходом соединен первый прямой вход электрического сумматора 9 правого сопла. Выходы электрических сумматоров 9 и 10 правого и левого сопел соединены с первыми входами корректоров 11 и 12 по скоростному напору правого и левого сопел и с первыми входами корректоров 13, 14 по высоте, вторые входы которых соответственно соединены с датчиками 19 и 20 скоростного напора и высоты. Выходы корректоров 13, 14 по скоростному напору и корректор по высоте соединен с входами устройств 15, 16 выбора минимального сигнала, выходы которых соединены с входами электрогидравлических приводов 17, 18 правого и левого сопла. Выходы электрогидравлических приводов соединены соответственно с правым и левым поворотным соплом, оси вращения которого установлены под углом к горизонтальной плоскости самолета.
Рассмотрим структурную схему системы, представленной на фиг. 2.
Заданные значения положения сопел δс пр, δс лев в виде электрических сигналов поступают на входы электрогидравлических приводов 17, 18, которые отклоняют сопла. Если δс пр = δс лев, то сопла отклоняются на один и тот же угол вверх или вниз (см. фиг. 3а). При этом проекция силы тяги каждого двигателя Р на ось У самолета создает продольный момент, обеспечивающий управление самолетом вокруг оси У
Mz = 2Psinδсcosφ•xс,
где Р - сила тяги каждого двигателя;
δс - угол отклонения сопла;
φ - угол между осью поворота сопла и осью Z самолета;
Х - расстояние между соплом и центром тяжести самолета. Проекция сил на ось Z от обоих двигателей направлены в разные стороны и не создают момента вращающего самолет вокруг оси У. В случае если δс пр = -δс лев, сопла отклоняются в разные стороны (см. фиг. 3б). Проекции сил на ось У направлены в разные стороны и не создают продольного момента, а проекции сил тяги двигателей на ось Z самолета направлены в одну сторону и создают путевой момент, обеспечивающий управление самолетом вокруг оси У
My = 2Psinδсcosφxс.
В общем случае при отклонении правого сопла на угол δс пр, а левого на угол δс лев создаются как продольный, так и путевой моменты
M = Psin(δс пр + δс лев)cosφ•xc,
M = Psin(δс пр - δс лев)sinφ•xc,
что обеспечивает одновременное управление самолетом, при помощи вектора тяги вокруг осей Z и У. Креновой момент, возникающий при управлении относительно оси У
Mx = Psin(δс пр - δс л)cosφ•L,
где L расстояние между двигателями, невелик из-за сравнительно малой величины L и парируется при необходимости моментов от отключения аэродинамических органов.
При создании момента рысканья максимальное уменьшение вектора тяги двигателей составляет
P = P(1-cosφ),
учитывая, что угол поворота оси сопел φ = 30%, максимальное уменьшение тяги равно ≈ 13%. Уменьшение тяги в системе управления, где момент рысканья создается за счет изменения подачи топлива составляет 50%. (Один двигатель развивает максимальную тягу, тяга второго близка к первой).
Вычисление требуемых положений правого сопла δс пр и левого сопла δс лев происходит следующим образом. В вычислителе 1 продольного управления аэродинамическими поверхностями самолета определяется требуемое в данный момент положение стабилизатора. Этот сигнал φст поступает на электронный усилитель 6 и на корректор усиления по углу атаки.
При малых углах атаки (α < 26o) выход корректора усиления по углу атаки равен нулю при всех значениях сигнала φст, и сигнал с выхода электронного усилителя 6 также равен значению φст. Предельные значения φст составляют -20o (кабрирование) и +15o (пикирование). Если значения φст лежат в пределах (-15) - (+10)o, то сигнал на выходе нелинейного усилителя продольного канала равен 0, и сопла по сигналам вычислителя продольного управления не отклоняются. При углах атаки > 30 равен нулю сигнал с электронного усилителя 6, а сопла отклоняются пропорционально сигналам продольного управления, так как именно этот сигнал будет на выходе корректора усиления по углу атаки и, следовательно, на выходе суммирующего усилителя 8, сигнал которого δс прод проходит на прямые входы электрических сумматоров и соответствует отклонению сопла для создания продольного момента.
Сигнал φр.н с вычислителя 2 путевого управления, равный отклонению рулей направдения, поступает на нелинейный усилитель путевого канала, выход которого равен нулю, если руль направления не достиг своих предельных значений ± 25o. В этом случае дифференциальное отклонение сопел также равно нулю. Таким образом, сопла отклоняются только в случаях, когда аэродинамические поверхности исчерпали свои возможности (сигнал требуемого отклонения стабилизаторов выходит за пределы (-15) - (+10)o, а сигнал требуемого отклонения руля направления более (25o), вследствие чего количество перемещений сопла в процессе управления резко уменьшается и ресурс сопла в летных часах значительно повышается.
Корректоры по высоте 13, 14 и скоростному напору 11, 12 и устройства выбора минимального сигнала 15, 16 обеспечивают то, что сопла не отклоняются на скоростных напорах более 1200 кг/м и на высотах более 12 км. Первое условие связано с тем, что сопла на больших скоростных напорах имеют малую по сравнению с аэродинамическими поверхностями эффективность, а второе с тем, что створки сопел при отклонениях на больших высотах перегреваются из-за малой теплоотдачи.
Таким образом, поставленная задача решается тем, что сигналы для управления соплами формируются таким образом, что сопла отклоняются только тогда, когда стабилизаторы и рули направления находятся в положениях, близких к предельным (исчерпали свои возможности) или тогда, когда самолет находится на больших углах атаки, причем отклонения сопел происходит только в ограниченном диапазоне скоростных напоров и высот; оси вращения сопел расположены под наклоном к горизонтальной плоскости самолета, благодаря чему при их дифференциальном отклонении создается момент рысканья.
Таким образом, введение корректоров по скоростному напору и высоте и устройств выбора минимального сигнала также резко повышает надежность работы системы и его ресурс.

Claims (1)

  1. Система управления двухдвигательного самолета посредством управления вектором тяги двигателей, содержащая вычислители продольного и путевого управления аэродинамическими поверхностями, электрогидравлические приводы правого и левого сопла, датчики углов атаки, скоростного напора и высоты, отличающаяся тем, что в нее дополнительно введены поворотные сопла, оси вращения которых расположены под углом к горизонтальной плоскости самолета, корректор усиления по углу атаки, первый вход которого соединен с выходом вычислителя продольного управления аэродинамическими поверхностями, а второй вход с выходом датчика угла атаки, электронный усилитель, прямой вход которого соединен с выходом вычислителя продольного управления аэродинамическими поверхностями, а инвертирующий вход с выходом корректора усиления по углу атаки, нелинейный усилитель продольного канала управления, вход которого соединен с выходом электронного усилителя, суммирующий усилитель, первый вход которого соединен с выходом корректора по углу атаки, а второй вход с выходом нелинейного усилителя продольного канала управления, а выход с прямыми входами электрических сумматоров правого и левого сопла, нелинейный усилитель путевого канала, вход которого соединен с выходом вычислителя путевого управления аэродинамическими поверхностями, а выход со вторым прямым входом электрического сумматора правого сопла и инвертирующим входом электрического сумматора левого сопла, корректор по скоростному напору и корректор по высоте правого сопла, корректор по скоростному напору и корректор по высоте левого сопла, первые входы которых соединены соответственно с выходами электрических сумматоров правого и левого сопла, а вторые входы с датчиками скоростного напора и высоты, устройства выбора минимального сигнала правого и левого сопла, первые входы которых соединены с выходами корректоров скоростного напора правого и левого сопел, вторые входы с выходами корректоров по высоте, а выходы со входами правого и левого электрогидравлических приводов, выходы которых соединены с поворотными соплами правого и левого двигателей.
RU98104220A 1998-03-20 1998-03-20 Система управления двухдвигательного самолета посредством управления вектором тяги RU2122963C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98104220A RU2122963C1 (ru) 1998-03-20 1998-03-20 Система управления двухдвигательного самолета посредством управления вектором тяги

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98104220A RU2122963C1 (ru) 1998-03-20 1998-03-20 Система управления двухдвигательного самолета посредством управления вектором тяги

Publications (2)

Publication Number Publication Date
RU2122963C1 true RU2122963C1 (ru) 1998-12-10
RU98104220A RU98104220A (ru) 1999-03-27

Family

ID=20203091

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98104220A RU2122963C1 (ru) 1998-03-20 1998-03-20 Система управления двухдвигательного самолета посредством управления вектором тяги

Country Status (1)

Country Link
RU (1) RU2122963C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445599C1 (ru) * 2010-12-03 2012-03-20 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения угла поворота вектора силы тяги гиперзвукового прямоточного воздушно-реактивного двигателя с косым срезом сопла по результатам летных испытаний его на гиперзвуковой летающей лаборатории
RU2504815C2 (ru) * 2011-02-09 2014-01-20 Николай Евгеньевич Староверов Способ управления самолетом и устройство для его осуществления
RU2577824C1 (ru) * 2014-09-16 2016-03-20 Валерий Туркубеевич Пчентлешев Летательный аппарат

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445599C1 (ru) * 2010-12-03 2012-03-20 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения угла поворота вектора силы тяги гиперзвукового прямоточного воздушно-реактивного двигателя с косым срезом сопла по результатам летных испытаний его на гиперзвуковой летающей лаборатории
RU2504815C2 (ru) * 2011-02-09 2014-01-20 Николай Евгеньевич Староверов Способ управления самолетом и устройство для его осуществления
RU2577824C1 (ru) * 2014-09-16 2016-03-20 Валерий Туркубеевич Пчентлешев Летательный аппарат

Similar Documents

Publication Publication Date Title
US4579298A (en) Directional control device for airborne or seaborne missiles
US2850977A (en) Self energized stabilizing control
US7628356B2 (en) Yaw control device for a nozzle having a rectangular outlet section
US5259569A (en) Roll damper for thrust vector controlled missile
US3350886A (en) Process and device for stabilizing and guiding a rocket-propelled ballistic vehicle
Imado et al. Missile guidance algorithm against high-g barrel roll maneuvers
CN107977009A (zh) 一种考虑耦合的吸气式飞行器姿态控制律设计方法
KR870000134B1 (ko) 로케트 비행체 및 이를 조정하는 방법
JPH05108157A (ja) 制御フイン指令混成方法
US3764091A (en) Improvements in or relating to control systems
US6298658B1 (en) Multi-stable thrust vectoring nozzle
RU2122963C1 (ru) Система управления двухдвигательного самолета посредством управления вектором тяги
US4044970A (en) Integrated thrust vector aerodynamic control surface
US3870253A (en) Aircraft vectored flight control means
RU2392186C2 (ru) Способ управления двухдвигательным самолетом и система для его осуществления
RU2122511C1 (ru) Управление самолетом посредством управления вектором тяги
JP3336743B2 (ja) 飛行制御装置
US5201829A (en) Flight control device to provide directional control
US4747568A (en) Missile flight control system
US6646242B2 (en) Rotational canted-joint missile control system
RU2122510C1 (ru) Способ управления вектором тяги маршевых двигателей самолета
US5004184A (en) System of vehicle guidance by continuous gas jets
US3070330A (en) Attitude and propellant flow control system and method
JPH04306500A (ja) 高旋回飛しょう体
US3341154A (en) Control systems for aircraft engine installations

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20111013

PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20130527

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20131226

PD4A Correction of name of patent owner