RU2122128C1 - Двигатель внутреннего сгорания с двухфазным рабочим ходом - Google Patents

Двигатель внутреннего сгорания с двухфазным рабочим ходом Download PDF

Info

Publication number
RU2122128C1
RU2122128C1 RU97107503A RU97107503A RU2122128C1 RU 2122128 C1 RU2122128 C1 RU 2122128C1 RU 97107503 A RU97107503 A RU 97107503A RU 97107503 A RU97107503 A RU 97107503A RU 2122128 C1 RU2122128 C1 RU 2122128C1
Authority
RU
Russia
Prior art keywords
cylinder
crankshaft
engine
cylinders
internal combustion
Prior art date
Application number
RU97107503A
Other languages
English (en)
Other versions
RU97107503A (ru
Inventor
В.У. Абдулин
Original Assignee
Абдулин Валерий Узбакович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абдулин Валерий Узбакович filed Critical Абдулин Валерий Узбакович
Priority to RU97107503A priority Critical patent/RU2122128C1/ru
Application granted granted Critical
Publication of RU2122128C1 publication Critical patent/RU2122128C1/ru
Publication of RU97107503A publication Critical patent/RU97107503A/ru

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано как силовая установка в различных транспортных средствах (катерах и кораблях, легковых и грузовых автомобилях, автобусах и пр. ), а также в мобильных источниках энергии (дизель-электрогенераторы, компрессоры и пр.). Предлагаемый двигатель для каждой пары цилиндров содержит дополнительный цилиндр, в котором продукты сгорания расширяются и совершают механическую работу. Газодинамическая схема предлагаемого двигателя позволяет по-новому сконструировать механизм, получить существенное улучшение экономичности. Изобретение обеспечивает повышение КПД за счет более полного использования тепловой энергии сгорания топлива в рабочем цикле. 3 ил.

Description

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано как силовая установка в различных транспортных средствах (катерах и кораблях, легковых и грузовых автомобилях, автобусах и пр.), а также в мобильных источниках энергии (дизель-электрогенераторы, компрессоры и пр.).
Известен классический 4-х тактный поршневой двигатель внутреннего сгорания (ДВС), состоящий из кривошипно-шатунного механизма, поршневой пары (поршень в цилиндре), устройства смесеобразования и механизма газораспределения (Политехнический словарь. Гл. ред. акад. И.И. Артоболевский. М.: Советская энциклопедия, 1976, с. 132). В цилиндре во время вращения коленвала по очереди протекают 4 такта: впуск, сжатие, сгорание смеси с выполнением полезной механической работы (т.н. рабочий ход) и, наконец, выпуск.
Недостаток устройства - недостаточно эффективен процесс использования энергии сгорающего топлива.
Известен также двигатель внутреннего сгорания, содержащий пару цилиндров с возвратно-поступательно движущимися поршнями и головку, в которой размещен газораспределительный золотник, снабженный общей для обоих цилиндров камерой сгорания и связанный с коленчатым валом двигателя (см. а.с. N 828780, кл. F 02 B 41/02, 1982). Выполнение цилиндров разного объема и смещение кривошипа коленвала цилиндра меньшего объема в сторону опережения по рабочему ходу вращения на 9 - 72o относительно кривошипа цилиндра большего объема позволяет повысить экономичность ДВС путем обеспечения продолженного расширения продуктов сгорания.
Данное устройство наиболее близко к предлагаемому (из имеющегося в фонде) и принято за прототип.
Недостаток устройства - сложность обеспечения необходимой герметичности золотникового механизма при высоких тепловых нагрузках и давлениях, присущих этому узлу конструктивно, сложность смазки скользящей поверхности в зоне окон золотника.
Цель изобретения - повысить коэффициент полезного действия поршневого двигателя внутреннего сгорания.
Для достижения этой цели предлагается конструкция двигателя внутреннего сгорания с 2-х фазным рабочим ходом (далее - ДВС с 2-х фазным РХ), отличающегося от известных поршневых ДВС наличием дополнительного цилиндра, в который продукты сгорания попадают при движении поршня в ведущем цилиндре.
Конструкция ДВС с 2-х фазным РХ поясняется схемами (см. фиг. 1, фиг. 2). Устройство состоит из насоса турбонаддува 1, одной или нескольких групп цилиндров, в каждой из которых два основных и один дополнительный (расширительный), с возвратно-поступательно движущимися в них поршнями, кинематически связанными с общим коленвалом. Термодинамические процессы в основных цилиндрах могут протекать как по циклу Дизеля, так и по циклу Отто (т. е. бензиновый, 4-х тактный), разность фаз между ними составляет 360o. Рабочий газ из каждого основного цилиндра, являющегося ведущим в группе по очереди, попадает в дополнительный с разницей в 360o поворота коленвала, диаграмма газораспределения совершенно одинакова по отношению к каждому из основных цилиндров, поэтому для определения работы в группе достаточно рассмотреть схему газообмена только одного основного цилиндра с дополнительным. В основном цилиндре 2 (на схемах второй не показан) и в дополнительном 3 находятся поршни 4 и 5, которые через шатуны 6 и 7 соответственно связаны общим коленвалом 8. Отношение рабочих объемов дополнительного цилиндра к основному обозначим
Figure 00000002
Цилиндры соединены между собой в головке блока цилиндров перепускной трубой 9, которая имеет сложную форму, через перепускной клапан 10. С целью лучшего перемешивания смеси, что особенно важно для дизельного цикла, перепускная труба 9 имеет форму кругового канала располагающегося вокруг оси клапана 10. Она составлена из внутренней стенки полости и поверхности тарелки перепускного клапана 10. Разность фаз между процессами в основном и дополнительном цилиндрах составляет γ градусов. Это означает, что после того как в основном цилиндре поршень 4 пройдет верхнюю "мертвую точку" (далее ВМТ), в дополнительном цилиндре поршень 5 пройдет ВМТ после поворота коленвала 8 на угол γ(γ < 180o). Основной цилиндр снабжен впускным клапаном 11. Дополнительный цилиндр - выпускным клапаном 12 и перепускным клапаном 13 для работы с вторым основным цилиндром.
Предлагаемый ДВС с 2-х фазным РХ работает следующим образом. Исходным состоянием является положение поршня 4 в ВМТ, в рабочем цилиндре нет рабочей смеси (см. фиг. 3). Коленвал вращается. После прохождения поршнем ВМТ открывается впускной клапан 11. При движении поршня вниз в цилиндр поступает воздух (смесь - для карбюраторного цикла). По достижении поршнем НМТ клапан 11 закрывается, "впуск" закончен. Коленвал продолжает вращение, поршень движется вверх, воздух в цилиндре сжимается и вытесняется в перепускную трубу 9, являющуюся камерой сгорания. Воздух (смесь) попадает в полость под острым углом к оси канала и начинает в нем циркулировать. Это такт - "сжатие". Вблизи ВМТ в перепускную трубу 9 впрыскивается топливо (при карбюраторном цикле - смесь зажигается). Оно сгорает и разогретый газ после прохождения поршнем ВМТ расширяется, этот такт - "рабочий ход". Рабочий ход состоит из двух фаз. Первая фаза протекает от положения поршня ВМТ до поворота коленвала 8 на угол γ (см. фиг. 1). Во время движения поршня 4 вниз горячий газ через кривошипно-шатунный механизм совершает полезную механическую работу. Назовем следующую фазу - "перепуск" (см. фиг. 2). В этот момент поршень 5 в дополнительном цилиндре 3 достигает ВМТ, механизм газораспределения открывает клапан 10, через перепускную трубу 9 оба цилиндра становятся сообщающимися. Поршень 4 движется вниз до достижения НМТ, а затем вверх. Поршень 5 движется вниз. Суммарный объем надпоршневых объемов в цилиндрах 2 и 3 непрерывно увеличивается до достижения коленвалом угла поворота αν
Figure 00000003
внутренняя энергия рабочего тела через поршни и кривошипно-шатунный механизм переходит в механическую энергию вращения коленвала 8. После поворота коленвала на угол αν, фаза "перепуск" завершается. Открывается клапан 12, начинается "выпуск". По достижении поршнем 4 ВМТ закрывается клапан 10. Детали в основном цилиндре, являвшемся ведущим, пришли в исходное положение, газодинамический цикл в нем замкнулся. Основной цилиндр готов к такту "впуск". В дополнительном цилиндре 3 выпуск продолжается до достижения поршнем 5 ВМТ. В этот момент клапан 12 закроется, газодинамический цикл в нем замкнется. Дополнительный цилиндр готов к началу перепуска разогретого газа через клапан 13 и 2-го основного цилиндра, ставшего ведущим.
Перечень фигур:
фиг. 1 представляет собой кинематическую схему ДВС с 2-х фазным РХ в первой фазе такта "рабочий ход";
фиг. 2 представляет собой кинематическую схему ДВС с 2-х фазным РХ во второй фазе такта "рабочий ход" - перепуск;
фиг. 3 представляет собой диаграмму газораспределения в ДВС с 2-х фазным РХ.
Предлагаемая конструкция ДВС позволяет уменьшить отношение объемов основного цилиндра
Figure 00000004
, увеличивая
Figure 00000005
(т.е. отношение давления внутри цилиндра в конце такта впуска к атмосферному), используя наддув воздуха (смеси) во впускном коллекторе, что при неизменной мощности заряда означает уменьшение геометрических размеров основного цилиндра и связанных с ним деталей и, как следствие, уменьшение массы подвижных и неподвижных частей в наиболее напряженном (механически и термически) узле не ухудшая показателей экономичности ДВС с 2-х фазным РХ.
Сопоставительный анализ с аналогами и прототипом показал, что заявляемое устройство отличается организацией термодинамического цикла в двигателе, а именно: имеет место совместная работа основного (ведущего) и дополнительного цилиндров в течение рабочего хода, используется полость сложной конфигурации в головке цилиндров в качестве перепускной трубы и камеры сгорания с интенсивным перемешиванием смеси. Таким образом, устройство отвечает критерию "новизна" и "существенное отличие".
Недостатком является некоторое усложнение конструкции двигателя связанное с увеличением числа цилиндров.
При равной с двигателем традиционной конструкции, мощности заряда ДВС с 2-х фазным РХ будет иметь следующие достоинства:
а) более полное использование тепловой энергии сгорания топлива за счет продолженного расширения продуктов сгорания, уменьшение тепловых потерь за счет более оптимального построения газодинамического цикла (сгорание в малоизменяемом объеме, рабочий ход с относительно быстрым изменением объема);
б) уменьшение геометрических размеров и механических нагрузок на детали основного цилиндра и привода (их перераспределение между основным и дополнительным цилиндрами), что увеличит надежность и срок службы двигателя в целом при прочих равных условиях;
в) в течение рабочего хода крутящий момент на валу изменяется более плавно, как следствие - уменьшение износа узлов трансмиссии, увеличение надежности ее работы при прочих равных условиях;
г) т.к. внутренняя энергия рабочего газа на выпуске меньше, а время выпуска больше, упрощаются устройства подавления акустического шума (т.е. глушители и резонаторы).
Конструкция ДВС с 2-х фазным РХ не требует использования дополнительных технологий при производстве, принципиально новых элементов конструкции (электрических, гидравлических, химических и др.), иных смазочных материалов, иных видов топлива, дорогих в изготовлении или редких материалов, и позволяет использовать с еще большей эффективностью все улучшения традиционных ДВС (микропроцессорное управление, применение керамики, впрыск, многоклапанные механизмы газораспределения и др.).

Claims (1)

  1. Двигатель внутреннего сгорания, содержащий по меньшей мере одну пару цилиндров с возвратно-поступательно движущимися поршнями, кинематически связанными с коленчатым валом двигателя, цилиндры выполнены разного объема, причем один цилиндр снабжен воздуховпускными органами, а второй - газовыпускными, и кривошип коленчатого вала первого цилиндра смещен в сторону опережения по ходу вращения на угол γ , отличающийся тем, что, с целью повышения КПД путем более оптимального использования тепловой энергии сгорания топлива, в такте рабочего хода участвуют ведущий и дополнительный цилиндры, клапан, их соединяющий, открывается по достижении угла γ (γ < 180o) после прохождения поршнем в ведущем цилиндре верхней мертвой точки, а камера сгорания, находящаяся в головке блока цилиндров, имеет форму кольцевого канала, расположенного вокруг оси перепускного канала, совмещает функцию патрубка перепуска, причем дополнительный цилиндр патрубками соединен с двумя основными цилиндрами, являющимися ведущими поочередно, через поворот коленчатого вала на угол 360o.
RU97107503A 1997-05-06 1997-05-06 Двигатель внутреннего сгорания с двухфазным рабочим ходом RU2122128C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97107503A RU2122128C1 (ru) 1997-05-06 1997-05-06 Двигатель внутреннего сгорания с двухфазным рабочим ходом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97107503A RU2122128C1 (ru) 1997-05-06 1997-05-06 Двигатель внутреннего сгорания с двухфазным рабочим ходом

Publications (2)

Publication Number Publication Date
RU2122128C1 true RU2122128C1 (ru) 1998-11-20
RU97107503A RU97107503A (ru) 1999-04-10

Family

ID=20192734

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97107503A RU2122128C1 (ru) 1997-05-06 1997-05-06 Двигатель внутреннего сгорания с двухфазным рабочим ходом

Country Status (1)

Country Link
RU (1) RU2122128C1 (ru)

Similar Documents

Publication Publication Date Title
US6722127B2 (en) Split four stroke engine
US8499726B2 (en) Internal combustion engines
US7516723B2 (en) Double piston cycle engine
US6698405B2 (en) Reciprocating internal combustion engine with balancing and supercharging
US6318310B1 (en) Internal combustion engine
US20150101557A1 (en) Rotary piston internal combustion engine
RU2394163C2 (ru) Системы радиально-импульсного двигателя, насоса и компрессора и способы их работы
US5431130A (en) Internal combustion engine with stroke specialized cylinders
JP2004536252A (ja) 分割式4ストロークサイクル内燃機関
US4491096A (en) Two-stroke cycle engine
CA1082603A (en) Reciprocating rotary engine
US8381692B2 (en) Internal combustion engine with exhaust-phase power extraction serving cylinder pair(s)
RU2299999C2 (ru) Двигатель внутреннего сгорания со вспомогательным цилиндром (варианты)
RU2122128C1 (ru) Двигатель внутреннего сгорания с двухфазным рабочим ходом
SU1733652A1 (ru) Двигатель внутреннего сгорани
RU2665766C2 (ru) Однотактный двигатель внутреннего сгорания
US3874346A (en) Internal combustion engine
RU2449138C2 (ru) Двигатель внутреннего сгорания
GB2196384A (en) Diesel and steam engine
RU2768430C1 (ru) Гибридная силовая установка
JPS59113239A (ja) 二段膨張式内燃機関
RU2184862C2 (ru) Способ создания вращающего момента в поршневых двигателях, преобразующих поступательное движение во вращательное при помощи кривошипа
RU2056510C1 (ru) Способ работы двухтактного двигателя внутреннего сгорания
RU2094632C1 (ru) Двигатель внутреннего сгорания
RU2253740C2 (ru) Двигатель внутреннего сгорания