RU2056510C1 - Способ работы двухтактного двигателя внутреннего сгорания - Google Patents

Способ работы двухтактного двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2056510C1
RU2056510C1 RU9393005904A RU93005904A RU2056510C1 RU 2056510 C1 RU2056510 C1 RU 2056510C1 RU 9393005904 A RU9393005904 A RU 9393005904A RU 93005904 A RU93005904 A RU 93005904A RU 2056510 C1 RU2056510 C1 RU 2056510C1
Authority
RU
Russia
Prior art keywords
exhaust
volume
working
piston
bypass
Prior art date
Application number
RU9393005904A
Other languages
English (en)
Other versions
RU93005904A (ru
Inventor
Юрий Михайлович Болычевский
Original Assignee
Юрий Михайлович Болычевский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Михайлович Болычевский filed Critical Юрий Михайлович Болычевский
Priority to RU9393005904A priority Critical patent/RU2056510C1/ru
Publication of RU93005904A publication Critical patent/RU93005904A/ru
Application granted granted Critical
Publication of RU2056510C1 publication Critical patent/RU2056510C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Использование: машиностроение, а именно поршневые двигатели внутреннего сгорания. Сущность изобретения: с целью повышения мощности и экономических показателей, а также снижения вредности выхлопа, способ включает впуск, предварительное сжатие рабочего тела, его перепуск в рабочий переменный объем с продувом последнего, окончательным сжатием, нагреванием за счет сгорания и расширения рабочего тела, а также выхлопом отработавшего тела из рабочего объема, начало выхлопа совмещают с моментом максимального значения рабочего объема, а начало перепуска и продувки осуществляют через 50 - 160 o поворота коленчатого вала после первого момента. 6 ил.

Description

Изобретение относится к машиностроению, а именно к поршневым двигателям внутреннего сгорания ДВС.
Известен классический способ работы двухтактного ДВС с внешним смесеобразованием (Автомобильные и тракторные двигатели М. Высшая школа, 1969, с. 65-66), осуществляемый впуском горючей смеси и ее предварительным сжатием в компрессионном подпоршневом объеме, перепускном в рабочий надпоршневой объем с его продувкой, окончательным сжатием, нагреванием за счет сгорания и расширением продуктов сгорания с отбором механической энергии в рабочем объеме, а также выхлопом отработавших газов из рабочего объема. Данный способ позволяет поднять литровую мощность сравнительно со способом четырехтактного ДВС путем сокращения числа тактов на цикл с 4-х до 2-х.
Недостаток способа низкая топливная экономичность, являющаяся следствием содержания в продувочных потерях горючей смеси значительного количества неиспользуемого топлива.
Известен способ работы двухтактного ДВС с внешним смесеобразованием [1] включающий дополнительную операцию нагнетания чистого воздуха в перепускные каналы в конце впуска смеси. При перепуске в рабочий объем сначала поступает чистый воздух из перепускных каналов, а затем горючая смесь. При такой последовательности продувочные потери состоят в основном из чистого воздуха, благодаря чему прямые потери топлива сокращаются.
Однако способ требует значительных конструктивных усложнений, а прямые потери топлива остаются существенными.
Ближайшим аналогом (прототипом) изобретения является способ работы двухтактного ДВС с внутренним смесеобразованием [2] включающий операции впуска, предварительного сжатия, перепуска с продувкой, окончательного сжатия, нагревания за счет сгорания, расширения с отбором механической энергии и выхлопа.
Однако в первых трех операциях применяют чистый воздух, благодаря чему прямые продувочные потери топлива полностью исключаются. Необходимое смесеобразование организуют после продувки и перепуска в процессе окончательного сжатия путем впрыска топлива в рабочий объем под давлением. Такой способ осуществим как в варианте с электроискровым зажиганием (бензиновый цикл), так и в варианте с самовоспламенением (дизельный цикл).
Однако прототипу, как и всем другим известным аналогам свойственны дополнительные общие недостатки, связанные с поршневым управлением перепуска и продувки. Такое управление делает фазу перепуска строго симметричной относительно нижней мертвой точки (НМТ) поршня, отсекающего рабочий объем в цилиндре. Фаза перепуска, длящаяся от 90 до 110о поворота коленчатого вала двигателя, должна начинаться, следовательно, за 45-55о до НМТ. Чтобы снизить давление газов в рабочем объеме перед перепуском, возникает необходимость организовать выхлоп еще раньше за 60-70о до НМТ. Следовательно, к моменту перевыхлопа значение рабочего объема составляет от 0,73 до 0,79 максимального (геометрического) значения. Дальнейшее его увеличение уже не связано с работой расширения нагретых газов, так как они уходят в выхлоп. Но это равносильно потере литража на 21-27% На тот же процент падает и литровая мощность двигателя.
Из-за большого значения продуваемого рабочего объема газовые потери продувки не удается сделать меньшими 25% Это равносильно уменьшению цикловой теплоты сгорания и литровой мощности дополнительно на 25% В результате литровая мощность возрастает не в 2 раза, как следует из соотношения тактностей, а всего лишь в 1,1-1,2 раза сравнительно со способом четырехтактного ДВС.
Место потерь в рабочем объеме занимают остаточные продукты сгорания. При повторении циклов они образуют около 25% своей рециркуляции, значительно ухудшающей состав горючей смеси. Из-за этого снижается скорость и полнота ее сгорания, что ведет к снижению быстроходности и КПД, а также к повышению концентрации не прогоревших фракций топлива и его активных радикалов. Экологический вред выхлопа при этом значительно возрастает.
Технической задачей изобретения является повышение мощностных и экономических показателей, а также снижение вредности выхлопа.
Это достигается тем, что в способе работы двухтактного ДВС, осуществляемом впуском и предварительным сжатием рабочего тела, его перепуском в рабочий переменный объем с продувкой последнего, окончательным сжатием, нагреванием за счет сгорания и расширением рабочего тела с отбором механической энергии в рабочем объеме, а также выхлопом отработавшего тела из рабочего объема, начало выхлопа совмещают с моментом максимального значения рабочего объема, а начало перепуска и продувки осуществляют через 50-160о поворота коленчатого вала после первого момента.
Первый отличительный признак дает полное использование рабочего объема при расширении, что повышает литровую мощность на 21-27% Второй признак увеличивает длительность предвыхлопа, что уменьшает количество продуктов сгорания перед продувкой. В совокупности признаки дают уменьшение продуваемого объема и увеличение давления предсжатия. Это увеличивает скорости и качество продувки и снижает рециркуляцию продуктов сгорания. В силу последнего улучшается весовое наполнение рабочего объема свежим зарядом, а также возрастает скорость и полнота сгорания. Это ведет к увеличению быстроходности и КПД двигателя, т. е. мощность двигателя дополнительно возрастает, а топливный расход падает. Более полное сгорание уменьшает концентрацию непрогоревшего топлива и его активных соединений, что уменьшает токсичность и экологический вред выхлопа.
На фиг. 1 дан двухцилиндровый двигатель для осуществления способа с одной газодинамической системой; на фиг. 2 двухцилиндровый двигатель с задействованными подпоршневыми объемами и двумя газодинамическими системами; на фиг. 3 схема двигателя по фиг. 2 в проекции "вид с верху" на цилиндры; на фиг. 4 однорядный многоцилиндровый двигатель; на фиг. 5 двухрядный многоцилиндровый двигатель; на фиг. 6 двигатель с крестообразной компоновкой цилиндров ("четырехконечная звезда").
Двигатель содержит первый компрессионный переменный объем 1 газодинамической системы двигателя, второй рабочий переменный объем 2 системы, перепускной канал 3 системы, управляемый затвор 4 перепускного канала, поршень 5 первого объема системы, цилиндр 6 первого объема системы, поршень 7 второго рабочего объема системы, цилиндр 8 второго рабочего объема системы, впускной патрубок 9, впускной клапан 10, выхлопной патрубок 11, выхлопной клапан 12.
Способ осуществляют следующим образом. Объемы системы 1 и 2 изменяют перемещением поршней 5 и 7 в цилиндрах 6 и 8. При этом перемещение поршня 5 устанавливают с опережением поршня 7 на угол Φo, который может быть выбран в пределах от 0 до 90о поворота коленчатого вала. При движении поршней вниз происходит впуск воздуха через патрубок 9 в расширяющийся объем 1 открытием впускного клапана 10 при закрытом затворе 4. Параллельно в объеме 2 организуют расширение горячих газов с передачей механической энергии расширения через поршень 7 на вал двигателя.
Процесс впуска заканчивают в момент НМТ поршня 5 закрытием впускного клапана 10 (с небольшим запаздыванием на инерционный наддув). При последующем поднятии поршня 5 начинают процесс предварительного сжатия впущенного воздуха в объеме.
При подходе поршня 7 к НМТ открывают выхлопной клапан 12, чем организуют предвыхлоп, имеющий в начале характер сверхзвукового истечения отработавших газов из объема 2 через выхлопной патрубок 11. При этом давление газов в объеме 2 резко падает. При дальнейшем подъеме поршня 7 предвыхлоп переходит в плановое поршневое вытеснение выхлопных газов, как в четырехтактном двигателе.
Через угол Φ1 после начала предвыхлопа открывают затвор 4, чем организуют начало перепуска предсжатого воздуха объема 1 в объем 2. Значение Φ1 в зависимости от значения Φo можно установить в пределах от 50 до 160о. Истечение перепускаемого воздуха из канала 3 образует продувку объема 2, которая довытесняет остатки выхлопного газа за счет заполнения объема воздухом при давлении, близком к атмосферному. Из-за повышенного давления в объеме 1 и малого значения продуваемого объема 2 продувка протекает быстрее и эффективней, чем в прототипе. Продувку заканчивают закрытием выхлопного клапана 12.
После этого давление в объеме 2 резко возрастает из-за продолжающегося процесса перепуска, который закачивают в момент ВМТ поршня 5 закрытием затвора 4. Этим сообщают объему 2 более высокое наполнение воздухом, чем в прототипе, несмотря на уменьшенное значение заполняемого объема.
Окончательное сжатие воздуха в объеме 2 осуществляют дальнейшим подъемом поршня 7 до ВМТ. Впрыск топлива, смесеобразование, воспламенение и сгорание организуют одним из известных способов (по бензиновому или дизельному циклу). При дальнейшем опускании поршня 7 осуществляют новый такт расширения. Параллельно при опускании поршня 5 осуществляют новый такт впуска. Таким образом, за два такта поршней осуществляют полный газодинамический цикл с возможностью повторения, т. е. непрерывной работы.

Claims (1)

  1. СПОСОБ РАБОТЫ ДВУХТАКТНОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ, заключающийся во впуске и предварительном сжатии рабочего тела, его перепуске в рабочий переменный объем с продувкой последнего, окончательном сжатии, нагревании за счет сгорания и расширения рабочего тела с отбором механической энергии в рабочем объеме, а также выхлопе отработавшего тела из рабочего объема, отличающийся тем, что начало выхлопа совмещают с моментом максимального значения рабочего объема, а начало перепуска и продувки осуществляют через 50 - 100o поворота коленчатого вала после первого момента.
RU9393005904A 1993-02-01 1993-02-01 Способ работы двухтактного двигателя внутреннего сгорания RU2056510C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9393005904A RU2056510C1 (ru) 1993-02-01 1993-02-01 Способ работы двухтактного двигателя внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9393005904A RU2056510C1 (ru) 1993-02-01 1993-02-01 Способ работы двухтактного двигателя внутреннего сгорания

Publications (2)

Publication Number Publication Date
RU93005904A RU93005904A (ru) 1995-04-30
RU2056510C1 true RU2056510C1 (ru) 1996-03-20

Family

ID=20136540

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9393005904A RU2056510C1 (ru) 1993-02-01 1993-02-01 Способ работы двухтактного двигателя внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2056510C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104372A (zh) * 2012-01-29 2013-05-15 摩尔动力(北京)技术股份有限公司 三类门热气发动机
CN103104370A (zh) * 2012-02-17 2013-05-15 摩尔动力(北京)技术股份有限公司 单缸三类门熵循环发动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 1240933, кл. F 02B 33/24, 1984. 2. Автомобильные и тракторные двигатели. М.: Высшая школа, 1969, с. 281 - 282. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103104372A (zh) * 2012-01-29 2013-05-15 摩尔动力(北京)技术股份有限公司 三类门热气发动机
CN103104370A (zh) * 2012-02-17 2013-05-15 摩尔动力(北京)技术股份有限公司 单缸三类门熵循环发动机
CN103104370B (zh) * 2012-02-17 2015-05-20 摩尔动力(北京)技术股份有限公司 单缸三类门熵循环发动机

Similar Documents

Publication Publication Date Title
US5103645A (en) Internal combustion engine and method
US4565167A (en) Internal combustion engine
US4159699A (en) Compound engines
AU750232B2 (en) Dual-cylinder expander engine and combustion method with two expansion strokes per cycle
US6279550B1 (en) Internal combustion engine
AU2002361622A1 (en) Controlled homogeneous-charge compression-ignition engine
US5056471A (en) Internal combustion engine with two-stage exhaust
JPH05179986A (ja) 内燃機関の運転方法
US7640911B2 (en) Two-stroke, homogeneous charge, spark-ignition engine
Duret et al. Reduction of pollutant emissions of the IAPAC two-stroke engine with compressed air assisted fuel injection
US5007384A (en) L-head two stroke engines
EP0126812A1 (en) Improvements in internal combustion engines
US6393841B1 (en) Internal combustion engine with dual exhaust expansion cylinders
US4075980A (en) Multiple-cycle, piston-type internal combustion engine
RU2056510C1 (ru) Способ работы двухтактного двигателя внутреннего сгорания
US6347610B1 (en) Engine
Groff Automotive two-stroke-cycle engine development in the 1980-1990’s
US4321892A (en) Multiple-cycle, piston-type internal combustion engine
RU2167315C2 (ru) Термодинамический цикл для двигателя внутреннего сгорания и устройство для его осуществления
WO2003058043A1 (fr) Type de structure pour moteur a combustion interne a mouvement alternatif
RU2078963C1 (ru) Спаренный двух-четырехтактный двигатель климова
US4489558A (en) Compound internal combustion engine and method for its use
CN1139472A (zh) 低压缩比内燃机
Sahu et al. A Critical Review on the Concept of Effect on Scavenging and Fuel Injection Timing on Two Stroke Engine
RU2066773C1 (ru) Способ работы двигателя внутреннего сгорания