RU2121845C1 - Способ получения рыбного жира - Google Patents

Способ получения рыбного жира Download PDF

Info

Publication number
RU2121845C1
RU2121845C1 RU95112233A RU95112233A RU2121845C1 RU 2121845 C1 RU2121845 C1 RU 2121845C1 RU 95112233 A RU95112233 A RU 95112233A RU 95112233 A RU95112233 A RU 95112233A RU 2121845 C1 RU2121845 C1 RU 2121845C1
Authority
RU
Russia
Prior art keywords
fat
fish
acids
electric current
fish oil
Prior art date
Application number
RU95112233A
Other languages
English (en)
Other versions
RU95112233A (ru
Inventor
Н.П. Боева
Ф.М. Ржавская
А.М. Макарова
О.А. Балова
Original Assignee
Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии filed Critical Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии
Priority to RU95112233A priority Critical patent/RU2121845C1/ru
Publication of RU95112233A publication Critical patent/RU95112233A/ru
Application granted granted Critical
Publication of RU2121845C1 publication Critical patent/RU2121845C1/ru

Links

Images

Landscapes

  • Fats And Perfumes (AREA)

Abstract

Процесс переработки измельченного рыбного сырья включает воздействие переменного электрического тока, термическую обработку, отделение жира и сушку, при этом измельченную рыбную массу подвергают воздействию электрического тока при напряженности поля 20-35 В/см и продолжительности 10-25 с, после чего из обработанной таким образом массы перед ее тепловой обработкой жир отделяют. Способ обеспечивает увеличение выхода жира и повышение содержания в нем w3-высоконенасыщенных жирных кислот, обладающих гипохолестериномическим эффектом. 3 табл.

Description

Изобретение относится к рыбной промышленности, в частности к способу получения рыбного жира из гидробионтов, а именно из морских рыб.
Характерная особенность жиров (липидов) рыб и гидробионтов в целом в отличие от растительных масел и жиров наземных животных состоит в присутствии значительных количеств высокомолекулярных (с 20-22 атомами углерода в молекуле) кислот с пятью и шестью двойными связями и концевой углеродной цепью в 3 атома углерода (w3- высоконенасыщенные жирные кислоты). Такие жирные кислоты обладают гипохолестеринемическим эффектом, который проявляется в нормализации липидного обмена у животных и людей, снижении уровня холестерина в крови, обусловливает возможность успешного использования рыбного жира, как такового, а также созданных на его основе препаратов, предназначенных для профилактики и лечения атеросклероза, ишемической болезни сердца, гипертонии.
Препараты на основе находящихся в рыбном жире высокомолекулярных жирных кислот с пятью и шестью двойными связями - эйкозапентаеновой ЭПК (20:5 w3) и докозагексаеновой ДГК (22: 6 w3) в настоящее время выпускаются в Японии, Англии, США, ФРГ и некоторых других странах, пользуются большим спросом на Мировом рынке и реализуются по весьма высоким ценам.
Однако технология таких препаратов с высокой концентрацией ЭПК и ДГК (до 70-80%) очень сложна, предусматривает применение органических растворителей, специального оборудования и на предприятиях рыбной промышленности неосуществима. В связи с этим возникла необходимость в разработке способа получения рыбного жира с повышенным содержанием ЭПК и ДГК, не требующего применения органических растворителей и сложного специального оборудования.
Используемый в промышленности способ получения жира в процессе производства рыбной кормовой муки основан на термической обработке (разваривании) измельченного рыбного сырья, отделении жидкой фазы, ее последующего разделения на водную и жировую фракции и высушивании плотного остатка (1). Существенным недостатком этого способа получения жира является его относительно низкий выход и недостаточное выделение высоконенасыщенных жирных кислот, находящихся в фосфолипидах, входящих в состав клеточных структур. Это обусловлено применением сравнительно высоких температур (80-100oC) в процессе разваривания рыбного сырья, приводящего к коагуляции белковых веществ, не обеспечивающей необходимое разрушение клеточных структур.
Известен также аналогичный способ, предусматривающий осуществление процесса разваривания сырья в присутствии синтетических неионогенных поверхностно-активных веществ - НПАВ (оксиэтилированной фракции синтетических спиртов или оксиэтилированного олеинового спирта) в целях более эффективного выделения жира (2). Однако и в этом случае применения термической обработки не исключается.
Наиболее близким техническим решением к заявленному способу (прототип) является способ получения жира при производстве кормовой рыбной муки с использованием электроплазмолиза, включающий те же основные технологические этапы, что и традиционный, но отличающийся тем, что для повышения выхода жира и качества целевого продукта-муки, измельченное сырье перед тепловой обработкой смешивают с водой до получения гомогенной массы в количестве 8-15% массы сырья (3) и подвергают обработке в электрическом поле путем воздействия переменного электрического поля до температуры начала коагуляции белковых веществ 32-35oC ,тепловую обработку (разваривание) проводят при более низкой температуре (60-75oC).
Следовательно, в данном способе воздействие электрического поля на гомогенную водно-рыбную массу сочетается с термообработкой. Однако этот способ не учитывает влияния воздействия электрического поля как такого перед термической обработкой на выход жира, а главное состав жирных кислот, в частности содержание физиологически активных w3- высоконенасыщенных (эйкозапентаеновой - 20:5 w3 и докозагексаеновой - 22:6 w3).
Цель изобретения состоит в возможности получения жира с максимальным выходом при наибольшем содержании w3-высоконенасыщенных кислот. Предложенный способ позволяет увеличить выход жира на 8-10% и повысить сумму w3-высоконенасыщенных кислот на 20-30% по сравнению с прототипом. Способ осуществляется следующим образом.
Для получения рыбного жира с повышенным содержанием w3-высоконенасыщенных жирных кислот используют тушки рыбы. При использовании мороженой рыбы ее предварительно размораживают на воздухе в помещении с температурой не выше 20oC.
Размораживание заканчивают по достижении температуры тела рыбы от 0oC до 1oC. Размороженную целую или частично разделанную рыбу (обезглавленную, потрошенную с головой) разделывают на тушки (с удалением головы, внутренностей и плавников).
Промытые водой с хорошо очищенной брюшной полостью тушки измельчают до размеров частиц не более 0,2-0,3 см и перемешивают в фаршемешалке. Измельченное рыбное сырье направляют на электрообработку. Для этого измельченную рыбную массу с помощью насоса подают в электродную камеру электроплазмолизатора и подвергают воздействию переменного электрического тока при напряженности поля 20-35 В/см и продолжительности 10-25 секунд. В результате воздействия электрического поля, образуемого переменным электрическим током (электроплазмолиза), происходит разрушение клеточных мембран, важным структурным элементом которого являются фосфолипиды, характеризующиеся значительно более высоким содержанием w3-высоконенасыщенных кислот по сравнению с запасными (депо) липидами, в основном представленными триглицеридами. Приведенные параметры электрообработки рыбного сырья установлены нами экспериментально и предлагаются как обеспечивающие максимальный выход жира при наибольшем содержании w3-высоконенасыщенных кислот. Рыбную массу после электрообработки направляют на центрифугирование в горизонтально-осадительной центрифуге для разделения на плотную и жидкую фракции или прессование на винтовых прессах.
Плотную фракцию, полученную после центрифугирования или прессования, направляют на приготовление кормовой рыбной муки прессово-сушильным сушильным или центрифужно-сушильным способом, жидкую фракцию направляют на сепарирование для отделения жира от воды.
Жир после сепарирования в случае необходимости (при повышенном значении кислотного числа и высоком содержании продуктов окисления) направляют на щелочную рафинацию, которая включает нейтрализацию раствором щелочи (едким натром или едким кали) небольшой концентрации, промывку водой и сепарирование. Прозрачный сепарированный жир направляют на расфасовку или капсулирование.
Способ поясняется следующими примерами:
Пример 1. 1 кг обезглавленной, освобожденной от внутренностей некондиционной по внешнему виду, измельченной скумбрии жирностью 16,2% подвергают воздействию переменного электрического тока при напряженности поля 15 В/см в течение 12 сек. Выход жира составляет 90 г или 55,5%. Сумма эйкозапентаеновой (20:5 w3) и докозагексаеновой (22:6 w3) кислот составляет около 20% общей массы кислот.
Пример 2. 1 кг скумбрии измельченной жирностью 16,2% подвергают воздействию переменного электрического тока при напряженности поля 25 В/см в течение 12 сек. Выход жира составляет 125 г или 77,2%. Сумма эйкозапентаеновой (20: 5 w3) и докозагексаеновой (22:6 w3) кислот составляет 22,5% общей массы кислот.
Пример 3. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию переменного электрического тока при напряженности поля 25 В/см в течение 17 сек. Выход жира составляет 140 г или 86,4%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 22,5% общей массы кислот.
Пример 4. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 20 В/см в течении 15 сек. Выход жира составляет 95 г или 58,5% к массе жира в сырье. Сумма кислот 20:5 w3 b 22:6 w3 составляет 22,5% общей массы кислот.
Пример 5. 1 кг измельченной скумбрии, жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 30 В/см в течение 20 сек. Выход жира составляет 135 г или 82% к массе жира в сырье. Сумма кислот 20:5 w3 и 22:6 w3 составляет 32,1% общей массы кислот.
Пример 6. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 25 В/см в течение 22 сек. Выход жира составляет 150 г или 92,2% к массе жира в сырье. Сумма кислот 20:5 w3 и 22:6 w3 составляет 23,7% общей массы кислот.
Пример 7. Скумбрию обрабатывают аналогично примеру 4, за исключением того, что используют электрический ток при напряженности поля 25 В/см и продолжительности его воздействия 27 сек. Выход жира составляет 134 г или 82,1%. Сумма кислот 20:5 w3 и 22: w3 составляет 25,2% общей массы кислот.
Пример 8. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию переменного электрического тока при напряженности поля 35 В/см и продолжительности 12 сек. Выход жира составляет 145 г или 89,5%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 24% общей массы кислот
Пример 9. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 35 В/см и продолжительности 17 сек. Выход жира составляет 125 г или 77,2%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 25% общей массы кислот.
Пример 10. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 40 В/см и продолжительности 12 сек. Выход жира составляет 95 г или 58,6%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 20,5%.
Пример 11. 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 25 В/см и продолжительности 22 сек, а затем термической обработке (развариванию) при 70oC в течение 10 мин. Выход жира составляет 138 г или 85,7%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 18,8% (прототип).
Пример 12 (прототип). 1 кг измельченной скумбрии жирностью 16,2% подвергают воздействию электрического тока при напряженности поля 35 В/см и продолжительности 12 сек, а затем термической обработке (развариванию) при 70oC в течение 10 мин. Выход жира составляет 133,5 г или 82,1%. Сумма кислот 20:5 w3 и 22:6 w3 составляет 18,6%.
Преимущества предлагаемого способа отражены также в таблицах 1, 2, 3. Данные этих таблиц подтверждают, что предложенный способ позволяет повысить выход жира на 8-10% и относительную сумму w3-высоконенасыщенных кислот на 20-30% по сравнению с прототипом.
Жир, полученный предложенным способом, по заключению Института Питания АМН РФ предназначен для применения в качестве гипохолестеринемического лечебно-профилактического пищевого продукта.
Источники информации, принятые во внимание при составлении заявки.
1. Сборник технологических инструкций по обработке рыбы.- М.: Колос, ВНИРО. - 1994. т. II - с. 507-526.
2. Авторское свидетельство СССР N 751383, кл. A 23 K 1/10, 1980.
3. Авторское свидетельство N 1683642, кл. A 23 K 1/10, 1989.

Claims (1)

  1. Способ получения рыбного жира, включающий измельчение сырья, воздействие переменного электрического тока, разваривание, отделение жира и сушку, отличающийся тем, что перед развариванием жир отделяют, воздействие электрического тока проводят при напряженности поля 20 - 35 В/см и продолжительности 10 - 25 с, а измельченное сырье подвергают воздействию электрического тока без предварительного смешивания с водой.
RU95112233A 1995-07-17 1995-07-17 Способ получения рыбного жира RU2121845C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95112233A RU2121845C1 (ru) 1995-07-17 1995-07-17 Способ получения рыбного жира

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95112233A RU2121845C1 (ru) 1995-07-17 1995-07-17 Способ получения рыбного жира

Publications (2)

Publication Number Publication Date
RU95112233A RU95112233A (ru) 1997-08-27
RU2121845C1 true RU2121845C1 (ru) 1998-11-20

Family

ID=20170165

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95112233A RU2121845C1 (ru) 1995-07-17 1995-07-17 Способ получения рыбного жира

Country Status (1)

Country Link
RU (1) RU2121845C1 (ru)

Similar Documents

Publication Publication Date Title
CA2738282C (en) Method for concentrating lipids
AU2007320183B2 (en) Process for production of omega-3 rich marine phospholipids from krill
AU2012364278B2 (en) Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
EP2291499B1 (en) Krill oil process
Nazir et al. Physicochemical and fatty acid profile of fish oil from head of tuna (Thunnus albacares) extracted from various extraction method
RU2420213C1 (ru) Комплексная переработка печени рыб семейства тресковых
US10499673B2 (en) Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
RU2121845C1 (ru) Способ получения рыбного жира
JP2008255182A (ja) リン脂質組成物の製造方法
RU2390274C1 (ru) Способ получения крабового жира
RU2064476C1 (ru) Способ получения пищевого красителя из гидробионтов
RU2278556C2 (ru) Способ получения комплекса жирорастворимых каротиноидов из гидробионтов и отходов их переработки
TWI673055B (zh) 一種高效萃取魚油的製程
KR20230102175A (ko) 초음파를 이용한 어류의 부산물 및 조직에서 오메가-3 및 오메가-6 지방산을 포함하는 지질 추출 방법
RU2619986C2 (ru) Способ комплексной переработки малоценного рыбного сырья
Dave et al. Sustainable fish oil extraction from catfish visceral biomass: A comparative study between high-shear homogenization and high-frequency ultrasound on wet rendering process