RU2120593C1 - Теплопередающее устройство - Google Patents

Теплопередающее устройство Download PDF

Info

Publication number
RU2120593C1
RU2120593C1 RU96120620A RU96120620A RU2120593C1 RU 2120593 C1 RU2120593 C1 RU 2120593C1 RU 96120620 A RU96120620 A RU 96120620A RU 96120620 A RU96120620 A RU 96120620A RU 2120593 C1 RU2120593 C1 RU 2120593C1
Authority
RU
Russia
Prior art keywords
heat pipe
heat
evaporator
capillary structure
flat
Prior art date
Application number
RU96120620A
Other languages
English (en)
Other versions
RU96120620A (ru
Inventor
Ю.Ф. Майданик
К.А. Гончаров
Original Assignee
Институт теплофизики Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт теплофизики Уральского отделения РАН filed Critical Институт теплофизики Уральского отделения РАН
Priority to RU96120620A priority Critical patent/RU2120593C1/ru
Application granted granted Critical
Publication of RU2120593C1 publication Critical patent/RU2120593C1/ru
Publication of RU96120620A publication Critical patent/RU96120620A/ru

Links

Images

Abstract

Изобретение относится к двухфазным теплопередающим устройствам с капиллярной прокачкой теплоносителя, в частности к тепловым трубам. Теплопередающее устройство включает контурную тепловую трубу 1, содержащую испаритель 3 с капиллярной структурой внутри и конденсатор 4. Испаритель 3 и конденсатор 4 сообщаются посредством раздельных паропровода 5 и конденсатопровода 6. Теплопередающее устройство снабжено плоской тепловой трубой 2. Активная зона 9 испарителя 3 контурной тепловой трубы 1 размещена внутри корпуса плоской тепловой трубы 2. На наружной поверхности активной зоны 9 контурной тепловой трубы 1 выполнена капиллярная структура, например, в виде мелкой винтовой нарезки, гидравлически связанная с капиллярной структурой плоской тепловой трубы 2, выполненной в виде нескольких слоев металлической сетки. Изобретение позволяет увеличить теплопередающую способность при выполнении плоской контактной поверхности в зоне подвода тепла при любой ориентации в гравитационном поле. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к теплотехнике, в частности к двухфазным теплопередающим устройствам с капиллярной прокачкой теплоносителя и тепловым трубам.
Известна плоская тепловая труба US N4046190, образованная двумя плоскими плитами с кромками, обеспечивающими зазор между плитами при их соединении. На внутренних поверхностях плит выполнены капиллярные канавки, расположенные под углом одна к другой и закрытые металлическим жгутом.
Недостатками такой конструкции являются незначительное расстояние теплопереноса, высокая чувствительность к положению в гравитационном поле, отсутствие механической гибкости, ограничивающей возможности монтажа.
Известна перемычка для стыковки тепловых труб, выполненная в виде тепловой трубы US N3831664. Тепловая труба - перемычка имеет плоскую форму с цилиндрическими гнездами для сопряжения с испарителем первой и конденсатором второй тепловой трубы.
Недостатком такого устройства является наличие дополнительного термического сопротивления, создаваемого стенками перемычки, а также ее собственным внутренним термическим сопротивлением.
Известна также теплопередающая система US N4602679, представляющая собой двухфазный циркуляционный контур, снабженный капиллярными насосами-испарителями, выполненными в виде плоских панелей. Каждая панель состоит из двух толстостенных пластин с выемками, образующими корпус, между которыми размещен плоский фитиль. На внутренней поверхности теплоприемной пластины, находящейся в контакте с первой поверхностью фитиля, выполнена система канавок для отвода пара, которые сообщаются с паровым коллектором и основным паропроводом. На другой пластине, находящейся в контакте со второй поверхностью фитиля, выполнена система канавок для развода жидкости из жидкостного коллектора, сообщающегося с основным конденсатопроводом системы.
Недостатком этого устройства является повышенная масса капиллярных насосов, плоская форма которых требует большой толщины стенок, чтобы выдерживать давление паров теплоносителя при рабочей температуре.
Поскольку, как правило, в подобных теплопередающих устройствах используется аммиак в качестве рабочей жидкости, являющейся наилучшим теплоносителем в диапазоне температур от 20 до 60oC, это давление может составлять величину 15-30 кг/см2. Даже при относительно малой величине контактной поверхности такого капиллярного насоса, равной, например, 200 см2, сила, действующая на каждую из пластин его корпуса, может достигать 600 кг. Толщина стенок, способная выдержать на изгиб такое давление, должна составлять не менее 5 мм.
Наиболее близкой к заявляемому техническому решению по технической сущности и достигаемому результату является контурная тепловая труба SU N1196665, содержащая цилиндрический испаритель с капиллярной насадкой (фитилем) внутри, сообщающийся с конденсатором посредством раздельных гладкостенных паропровода и конденсатопровода. Контурная тепловая труба обладает высокой теплопередающей способностью, работает при любой ориентации в гравитационном поле.
Однако при сопряжении цилиндрического испарителя с плоским охлаждающим элементом возникает необходимость в дополнительном переходном элементе. Такой элемент вносит дополнительное термическое сопротивление при передаче тепла от объекта к испарителю, которое возрастает с увеличением площади и увеличивают массу устройства.
В основу изобретения положена задача создания устройства, обладающего высокой теплопередающей способностью, работающего при любой ориентации в гравитационном поле, имеющего плоскую контактную поверхность практически необходимых размеров в зоне подвода тепловой нагрузки при минимальном весе и термическом сопротивлении.
Поставленная задача решается тем, что теплопередающее устройство, включающее контурную тепловую трубу, содержащую и испаритель с капиллярной структурой внутри, и конденсатор, сообщающиеся посредством раздельных гладкостенных паро- и конденсатопровода, снабжено плоской тепловой трубой с капиллярной структурой на внутренней поверхности. При этом активная зона испарителя контурной тепловой трубы, предназначенная для подвода тепловой нагрузки, длина которой соответствует длине зоны испарения, размещена внутри плоской тепловой трубы. На наружной поверхности активной зоны испарителя выполнена капиллярная структура, гидравлически связанная с капиллярной структурой плоской тепловой трубы.
Капиллярная структура на наружной поверхности активной зоны испарителя контурной тепловой трубы выполнена в виде мелкой винтовой нарезки.
Капиллярная структура плоской тепловой трубы выполнена в виде нескольких слоев металлической сетки.
Контурная тепловая труба заполнена теплоносителем, обеспечивающим максимальную теплопередающую способность устройства при заданной рабочей температуре, например аммиаком.
Плоская тепловая труба заполнена теплоносителем, имеющим более низкое давление паров теплоносителя при той же рабочей температуре, например ацетоном.
Роль плоской тепловой трубы в данном устройстве заключается в обеспечении изотермичности теплоприемной поверхности и подводе тепла к испарителю контурной тепловой трубы с минимальным термическим сопротивлением. Испаритель контурной тепловой трубы при этом выполняет функцию конденсатора плоской тепловой трубы, а сама контурная тепловая труба обеспечивает функцию основного теплопередающего звена. При необходимости увеличения размеров теплоприемной поверхности и соответственно длины плоской тепловой трубы в устройстве используется несколько испарителей, включенных параллельно и входящих в состав одной или нескольких контурных тепловых труб.
Таким образом, предлагаемое сочетание контурной и плоской тепловых труб, при наличии гидравлической связи капиллярной структуры на наружной поверхности активной зоны испарителя контурной тепловой трубы и капиллярной структуры плоской тепловой трубы обеспечило создание устройства, обладающего одновременно высокой теплопередающей способностью, работающего при любой ориентации в гравитационном поле и имеющего плоскую контактную поверхность практически необходимых размеров в зоне подвода тепловой нагрузки при минимальном весе и термическом сопротивлении.
На фиг.1 изображен общий вид теплопередающего устройства.
На фиг.2 представлен разрез плоской тепловой трубы и испарителя контурной тепловой трубы.
На фиг.3 представлен фрагмент общего вида теплопередающего устройства с несколькими испарителями.
Теплопередающее устройство включает контурную тепловую трубу 1 и плоскую тепловую трубу 2. Контурная тепловая труба 1 включает испаритель 3, конденсатор 4, паропровод 5 и конденсатопровод 6. Внутри испарителя 3 размещена капиллярно-пористая насадка 7 с продольными пароотводными канавками 8, которые вместе с азимутальными канавками (не показаны) на внутренней поверхности корпуса испарителя 3 образуют зону испарения. Часть испарителя 3, предназначенная для подвода тепловой нагрузки, длина которой соответствует длине зоны испарения, является активной зоной 9 испарителя 3.
Активная зона 9 размещена внутри плоской тепловой трубы 2. На наружной поверхности активной зоны 9 выполнена капиллярная структура 10, например, в виде мелкой винтовой нарезки, которая имеет гидравлическую связь с капиллярной структурой 11 плоской тепловой трубы 2, выполненной, например, в виде нескольких слоев металлической сетки. При увеличении длины теплоприемной поверхности плоской тепловой трубы 2 внутри нее размещается несколько испарителей 3, входящих в состав одной или нескольких контурных тепловых труб 1.
Теплопередающее устройство работает следующим образом.
При подводе тепла от источника тепловой нагрузки, который располагается на одной или нескольких поверхностях плоской тепловой трубы 2, теплоноситель испаряется из ее капиллярной структуры 11, поглощая тепло за счет скрытой теплоты парообразования. Образовавшийся пар распространяется до поверхности активной зоны 9 испарителя 3 контурной тепловой трубы 1 и конденсируется здесь, передавая тепло, выделяющееся при конденсации, контурной тепловой трубе 1, испаритель 3 которой в данном случае выполняет роль конденсатора плоской тепловой трубы 2. Образовавшийся конденсат впитывается в капиллярную структуру 10, выполненную на поверхности активной зоны 9, и из нее попадает в капиллярную структуру 11 плоской тепловой трубы 2, и распределяется по ней за счет действия капиллярных сил.
Тепло, отданное при конденсации контурной тепловой трубе 1, вызывает испарение теплоносителя из капиллярной структуры 7. Пар из пароотводных канавок 8 поступает в паропровод 5 контурной тепловой трубы 1 и движется в конденсатор 4, где конденсируется и отдает тепло внешнему приемнику тепла. Образовавшийся конденсат по конденсатопроводу 6 возвращается в испаритель 3, замыкая рабочий цикл и передачи тепла.
Таким образом, за счет высокой эффективной теплопроводности, присущей тепловым трубам, обеспечиваются высокая изотермичность и низкое термическое сопротивление переходного термоконтактного элемента "плоскость-цилиндр", роль которого выполняет плоская тепловая труба 2. Одновременно с этим обеспечивается низкое термическое сопротивление между плоской тепловой трубой 1, поскольку передача тепла осуществляется при непосредственной конденсации теплоносителя в плоской тепловой трубе 2 на поверхность активной зоны 9 испарителя 3 контурной тепловой трубы 1. Поскольку в плоской тепловой трубе 2 используется теплоноситель, например ацетон, давление паров которого в рабочем температурном диапазоне примерно в 25 раз ниже, чем давление паров аммиака при той же температуре, который, например, используется в качестве теплоносителя контурной тепловой трубы 1, толщина стенок плоской тепловой трубы может быть относительно малой. Этим достигается снижение веса устройства.
При этом более низкая эффективность ацетона как теплоносителя по сравнению с аммиаком не играет существенной роли, так как здесь имеет место трансформация плотности теплового потока, создаваемого тепловой нагрузкой. Кроме того, основную транспортную функцию выполняет контурная тепловая труба 1, обладающая высокой теплопередающей способностью и широким диапазоном функциональных возможностей. В то же время конструкция контурной тепловой трубы 1 позволяет использовать теплоносители с высоким рабочим давлением пара, которые являются наиболее эффективными при соответствующей рабочей температуре.
В тех случаях, когда необходимо увеличить размеры теплоприемной поверхности плоской тепловой трубы 2, в устройстве используется несколько испарителей 3, входящих в состав одной или нескольких контурных тепловых труб 1.

Claims (3)

1. Теплопередающее устройство, включающее контурную тепловую трубу, содержащую испаритель с капиллярной структурой внутри и конденсатор, сообщающиеся посредством раздельных паро- и конденсатопровода, отличающееся тем, что оно снабжено плоской тепловой трубой, при этом активная зона контурной тепловой трубы размещена внутри корпуса плоской тепловой трубы, и на ее наружной поверхности выполнена капиллярная структура, гидравлически связанная с капиллярной структурой плоской тепловой трубы.
2. Устройство по п. 1, отличающееся тем, что капиллярная структура на наружной поверхности активной зоны испарителя контурной тепловой трубы выполнена в виде мелкой винтовой нарезки.
3. Устройство по пп. 1 и 2, отличающееся тем, что капиллярная структура плоской тепловой трубы выполнена в виде нескольких слоев металлической сетки.
RU96120620A 1996-10-08 1996-10-08 Теплопередающее устройство RU2120593C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96120620A RU2120593C1 (ru) 1996-10-08 1996-10-08 Теплопередающее устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96120620A RU2120593C1 (ru) 1996-10-08 1996-10-08 Теплопередающее устройство

Publications (2)

Publication Number Publication Date
RU2120593C1 true RU2120593C1 (ru) 1998-10-20
RU96120620A RU96120620A (ru) 1998-12-27

Family

ID=20186607

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96120620A RU2120593C1 (ru) 1996-10-08 1996-10-08 Теплопередающее устройство

Country Status (1)

Country Link
RU (1) RU2120593C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2473035C1 (ru) * 2011-05-05 2013-01-20 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Контурная тепловая труба
CN109900148A (zh) * 2019-04-01 2019-06-18 济南大学 一种滑动式的热管组合散热器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2473035C1 (ru) * 2011-05-05 2013-01-20 Федеральное государственное унитарное предприятие "Научно-производственное объединение им. С.А. Лавочкина" Контурная тепловая труба
CN109900148A (zh) * 2019-04-01 2019-06-18 济南大学 一种滑动式的热管组合散热器

Similar Documents

Publication Publication Date Title
EP2170030B1 (en) Electronic apparatus
US6626231B2 (en) Heat transfer device
CA1120029A (en) Heat pipe bag system
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US20190331432A1 (en) Loop heat pipe having condensation segment partially filled with wick
US4616699A (en) Wick-fin heat pipe
CN112432532B (zh) 蒸发器组件及环路热管
RU2120593C1 (ru) Теплопередающее устройство
US20060054308A1 (en) Multiple fluid heat pipe
CN104303293A (zh) 冷却装置的连接结构、冷却装置和连接冷却装置的方法
RU2296929C2 (ru) Теплопередающее устройство для охлаждения электронных приборов
KR101014371B1 (ko) 히트 파이프
CN108278917B (zh) 平板式蒸发器及平板式环路热管
KR100865718B1 (ko) 장거리 열량수송용 히트파이프
US4884627A (en) Omni-directional heat pipe
RU2000131540A (ru) Космический аппарат
CN208075644U (zh) 平板式蒸发器及平板式环路热管
WO1997008483A3 (en) Heat pipe
US8783333B1 (en) Cooling system
RU2117893C1 (ru) Теплопередающий двухфазный контур (варианты)
KR200424888Y1 (ko) 진공보일러
RU2105939C1 (ru) Испаритель
RU93017073A (ru) Теплопередающее устройство
RU2194935C2 (ru) Теплопередающее устройство
RU2156425C2 (ru) Реверсивное теплопередающее устройство