RU2105939C1 - Испаритель - Google Patents

Испаритель Download PDF

Info

Publication number
RU2105939C1
RU2105939C1 RU95116759/06A RU95116759A RU2105939C1 RU 2105939 C1 RU2105939 C1 RU 2105939C1 RU 95116759/06 A RU95116759/06 A RU 95116759/06A RU 95116759 A RU95116759 A RU 95116759A RU 2105939 C1 RU2105939 C1 RU 2105939C1
Authority
RU
Russia
Prior art keywords
zone
thermal contact
junctions
housing
power cavity
Prior art date
Application number
RU95116759/06A
Other languages
English (en)
Other versions
RU95116759A (ru
Inventor
Марат Шавкатович Гадельшин
Original Assignee
Марат Шавкатович Гадельшин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Марат Шавкатович Гадельшин filed Critical Марат Шавкатович Гадельшин
Priority to RU95116759/06A priority Critical patent/RU2105939C1/ru
Publication of RU95116759A publication Critical patent/RU95116759A/ru
Application granted granted Critical
Publication of RU2105939C1 publication Critical patent/RU2105939C1/ru

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Использование: в теплотехнике, например, при разработке тепловых труб для охлаждения и термостатирования элементов электроники. Сущность изобретения: улучшение работоспособности испарителя за счет создания возможности регулирования температуры в зоне полости питания обеспечивается это тем, что испаритель содержит корпус 1 испарительной камеры и размещенную внутри него капиллярную структуру 2, которые образуют зону испарения 3 и зону полости питания 4, а также термоэлектрическую батарею 7, при этом поверхность спаев 8 последней соединена тепловым контактом 10 с зоной испарения 3, а поверхность спаев 9 - тепловым контактом 11 с зоной полости питания 4. Тепловой контакт 11 с зоной полости питания 4 может быть выполнен по наружной поверхности корпуса 1, а капиллярная структура 2 может быть выполнена соединенной в области этого контакта в внутренней поверхностью корпуса 1. Для теплового контакта может использоваться тепловая труба. 3 з.п.ф-лы, 6 ил.

Description

Изобретение относится к области теплотехники, в частности к конструкции испарителей, являющихся одним из основных элементов теплопередающих устройств, может быть использовано при разработке тепловых труб для охлаждения и термостатирования элементов электроники.
Известна конструкция испарителя, выбранная в качестве прототипа, содержащая корпус испарительной камеры и размещенную внутри него капиллярную структуру, которые образуют зону испарения и зону полости питания. Недостатком конструкции является зависимость работоспособности испарителя от температуры в зоне полости питания.
Целью изобретения является улучшение работоспособности испарителя за счет создания возможности регулирования температуры в зоне полости питания.
Указанная цель достигается тем, что в известной конструкции испарителя, содержащей корпус испарительной камеры и размещенную внутри него капиллярную структуру, которые образуют зону испарения и зону полости питания, установлена термоэлектрическая батарея, имеющая две поверхности спаев, которые в зависимости от направления тока становятся либо поверхностями горячих и холодных спаев, либо наоборот. Причем одна поверхность спаев соединена тепловым контактом с зоной испарения испарительной камеры, а другая поверхность спаев соединена тепловым контактом с зоной полости питания.
Тепловой контакт с полостью питания может быть выполнен по наружной поверхности корпуса в зоне полости питания.
Капиллярная структура может быть выполнена соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта.
Для теплового контакта может быть использована тепловая труба. Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый испаритель отличается тем, что установлена термоэлектрическая батарея, имеющая две поверхности спаев, причем одна поверхность спаев соединена тепловым контактом с зоной испарения, а другая поверхность спаев соединена тепловым контактом с зоной полости питания. Тепловой контакт одной из поверхностей спаев с зоной полости питания может быть выполнен по наружной поверхности корпуса в зоне полости питания; при этом капиллярная структура может быть выполнена соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта. Для теплового контакта может быть использована тепловая труба.
На фиг. 1 изображена конструкция испарителя; на фиг. 2-6 частные конструкции испарителя: выполнение теплового контакта одной из поверхностей спаев термоэлектрической батареи с полостью питания по наружной поверхности корпуса в зоне полости питания (фиг. 2-6); выполнение капиллярной структуры, соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области теплового контакта (фиг.4-6); использование тепловой трубы в качестве теплового контакта (фиг. 2 и 6).
Испаритель содержит корпус 1 испарительной камеры и размещенную внутри него капиллярную структуру 2, которые образуют зону испарения 3 и зону полости питания 4. В зоне испарения осуществляется парообразование и отвод пара к паропроводу 5, который гидравлически соединен с зоной испарения. Зона полости питания служит для обеспечения поступления жидкого теплоносителя в зону испарения. Показан также жидкостный трубопровод 6, гидравлически соединенный с зоной полости питания (фиг. 1-6). Установлена термоэлектрическая батарея 7, имеющая как минимум две поверхности спаев 8 и 9, которые в зависимости от направления тока в батарее становятся либо поверхностными горячих и холодных спаев соответственно, либо наоборот. Причем поверхность спаев 8 соединена тепловым контактом 10 с зоной испарения 3, а поверхность спаев 9 соединена тепловым контактом 11 с зоной полости питания 4. Тепловой контакт 11 может быть выполнен по внешней поверхности корпуса в зоне полости питания (фиг. 2-6), а капиллярная структура может быть выполнена соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта (фиг. 4,5 и 6). В качестве теплового контакта может быть использована тепловая труба 12 (фиг. 2 и 6). На внешней поверхности корпуса в зоне испарения устанавливаются термостатируемые элементы 13, которые могут выделять или поглощать тепло.
Испаритель работает следующим образом.
При пропускании электрического тока термоэлектрическую батарею таким образом, что поверхность спаев 8 и 9 становятся соответственно поверхностями горячих и холодных спаев, за счет тепловых контактов 10 и 11 в зоне испарения имеет место тепловыделение, а в зоне полости питания охлаждение (1-ый режим работы). Вследствие охлаждения жидкости в зоне полости питания упругость ее паров уменьшается, и это приводит к увеличению количества жидкости, поступающей в единицу времени в зону полости питания по жидкостному трубопроводу 6. Таким образом, увеличивается питание капиллярной структуры и как следствие, происходит улучшение питания жидкостью зоны испарения. Поэтому увеличивается теплоотдача при испарении, что приводит к возрастанию теплоотвода от элемента 13. Поскольку холодопроизводительность термоэлектрической батареи зависит от силы тока, то и интенсивность процессов теплоотдачи в зоне испарения зависит от силы тока.
При пропускании электрического тока через термоэлектрическую батарею в обратном направлении поверхности спаев 8 и 9 становятся соответственно поверхностями холодных и горячих спаев (2-ой режим работы). Это приводит к нагреву зоны полости питания и к увеличению в ней упругости паров. В результате ухудшается питание капиллярной структуры и уменьшается поступление жидкости в зону испарения, что приводит к снижению интенсивности теплоотвода от элемента 13 и к увеличению его температуры.
Причем интенсивность теплоотвода также будет зависеть от силы тока.
Таким образом, интенсивность теплоотвода в зоне испарения зависит от направления электрического тока в термоэлектрической батарее и от значения силы тока.
При выполнении теплового контакта одной из поверхностей спаев термоэлектрической батареи по наружной поверхности корпуса в зоне полости питания (фиг. 2-6) внутренняя поверхность в области выполнения этого теплового контакта становится областью стока тепла при 1-ом режиме работы. Тепло может передаваться посредством переноса пара с последующей его конденсацией (фиг. 2, 4 6) и дополнительно теплопроводностью по капиллярной структуре (фиг. 6). При этом возврат конденсата осуществляется либо его стеканием в поле массовых сил (фиг. 2), либо капиллярными силами, что осуществляется при выполнении капиллярной структуры соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта (фиг. 4, - 6). Зона полости питания может охлаждаться и путем непосредственного охлаждения жидкости, транспортируемой в зону испарения (фиг. 3). Для обеспечения теплового контакта используется тепловая труба (фиг. 2 и 6).
Во 2-ом режиме работы нагрев зоны полости питания осуществляется либо путем непосредственного нагрева паровой области (фиг. 2), либо посредством парообразования и переноса пара с последующей его конденсацией (фиг. 4-6) совместно с теплопроводностью по капиллярной структуре (фиг. 6), либо путем непосредственного нагрева жидкости с последующей ее транспортировкой в зону испарения (фиг. 3).
Использование термоэлектрической батареи, имеющей две поверхности спаев таким образом, что одна поверхность спаев соединена тепловым контактом с зоной испарения, а другая с зоной полости питания, улучшает работоспособность устройства, поскольку создается возможность регулирования температуры в зоне полости питания, а следовательно, и интенсивности теплоотвода в зоне испарения путем управления электрическим током в термоэлектрической батарее по величине и направлению. Выполнение теплового контакта одной из поверхностей спаев термоэлектрической батареи с зоной полости питания по наружной поверхности корпуса в зоне полости питания упрощает технологию изготовления испарителя. При этом выполнение капиллярной структуры соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта обеспечивает работоспособность испарителя при любых ориентациях.
Использование тепловой трубы 12 для обеспечения теплового контакта существенно повышает эффективность устройства и делает возможным его изготовление более технологичным (фиг. 2 и 6).

Claims (4)

1. Испаритель, содержащий корпус испарительной камеры и размещенную внутри него капиллярную структуру, которые образуют зону испарения и зону полости питания, отличающийся тем, что установлена термоэлектрическая батарея, имеющая две поверхности спаев, причем одна поверхность спаев соединена тепловым контактом с зоной испарения, а другая поверхность спаев соединена тепловым контактом с зоной полости питания.
2. Испаритель по п.1, отличающийся тем, что тепловой контакт одной из поверхностей спаев термоэлектрической батареи с зоной полости питания выполнен по наружной поверхности корпуса в зоне полости питания.
3. Испаритель по пп.1 и 2, отличающийся тем, что капиллярная структура выполнена соединенной с внутренней поверхностью корпуса в зоне полости питания на участках области выполнения теплового контакта.
4. Испаритель по п.1, отличающийся тем, что для теплового контакта используется тепловая труба.
RU95116759/06A 1995-09-28 1995-09-28 Испаритель RU2105939C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95116759/06A RU2105939C1 (ru) 1995-09-28 1995-09-28 Испаритель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95116759/06A RU2105939C1 (ru) 1995-09-28 1995-09-28 Испаритель

Publications (2)

Publication Number Publication Date
RU95116759A RU95116759A (ru) 1997-08-20
RU2105939C1 true RU2105939C1 (ru) 1998-02-27

Family

ID=20172460

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95116759/06A RU2105939C1 (ru) 1995-09-28 1995-09-28 Испаритель

Country Status (1)

Country Link
RU (1) RU2105939C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU192448U1 (ru) * 2018-12-29 2019-09-17 Александр Иванович Андреев Вихревой испаритель
RU205221U1 (ru) * 2021-03-23 2021-07-05 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Капельное испарительное устройство

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU192448U1 (ru) * 2018-12-29 2019-09-17 Александр Иванович Андреев Вихревой испаритель
RU205221U1 (ru) * 2021-03-23 2021-07-05 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Капельное испарительное устройство

Similar Documents

Publication Publication Date Title
US20190285356A1 (en) Electronics Cooling with Multi-Phase Heat Exchange and Heat Spreader
US4951740A (en) Bellows heat pipe for thermal control of electronic components
JP2008311399A (ja) ヒートシンク
RU2105939C1 (ru) Испаритель
US4106554A (en) Heat pipe heat amplifier
KR200242427Y1 (ko) 고효율 열매체 방열기를 이용한 3중관 열교환기 및 이를이용한 보일러장치
US4884627A (en) Omni-directional heat pipe
KR200190443Y1 (ko) 히트파이프 타입 보일러
WO1997008483A3 (en) Heat pipe
RU2035673C1 (ru) Тепловая труба
JPH0942870A (ja) ヒートパイプ式ヒートシンク
RU2112908C1 (ru) Термоэлектрический блок (варианты)
KR100411852B1 (ko) 반도체 칩의 전열관식 냉각장치 및 이의 제조방법
RU2120593C1 (ru) Теплопередающее устройство
RU2115869C1 (ru) Холодильник
RU2187773C2 (ru) Теплопередающее устройство и устройство для подачи теплоносителя
KR200228259Y1 (ko) 히트파이프를 이용한 보일러장치
KR200263749Y1 (ko) 열전소자모듈을 냉각시키기 위한 라디에이터형 냉각장치
RU11318U1 (ru) Испарительная камера контурной тепловой трубы (варианты)
KR200232984Y1 (ko) 진공전도 가온식 전기보일러
KR100468278B1 (ko) 전도체 일체형 히트파이프 냉각기
SU1214354A1 (ru) Устройство дл пайки и сварки
JP2000150749A (ja) ヒートシンク
SU463841A1 (ru) Термоэлектрический холодильник
JPH09303984A (ja) 熱素子

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050929