RU2117051C1 - Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне - Google Patents

Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне Download PDF

Info

Publication number
RU2117051C1
RU2117051C1 RU97106657A RU97106657A RU2117051C1 RU 2117051 C1 RU2117051 C1 RU 2117051C1 RU 97106657 A RU97106657 A RU 97106657A RU 97106657 A RU97106657 A RU 97106657A RU 2117051 C1 RU2117051 C1 RU 2117051C1
Authority
RU
Russia
Prior art keywords
slag
current collector
electrode
slag bath
ground
Prior art date
Application number
RU97106657A
Other languages
English (en)
Other versions
RU97106657A (ru
Inventor
С.К. Вильданов
В.А. Роменец
В.С. Валавин
Original Assignee
Московский государственный институт стали и сплавов (технологический университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский государственный институт стали и сплавов (технологический университет) filed Critical Московский государственный институт стали и сплавов (технологический университет)
Priority to RU97106657A priority Critical patent/RU2117051C1/ru
Application granted granted Critical
Publication of RU2117051C1 publication Critical patent/RU2117051C1/ru
Publication of RU97106657A publication Critical patent/RU97106657A/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к черной металлургии, к технологиям прямого получения железа путем восстановления его из оксидов твердым углеродом в жидкой шлаковой ванне. Задача, решаемая изобретением, - разработка безинерционного, непрерывного способа контроля технологических процессов с одновременно протекающими окислительно-восстановительными реакциями, основанного на регистрации и анализе суммарной электрической разности потенциалов, возникающей в период работы пирометаллургического агрегата в электрической цепи электрод-токосъемник-измерительный прибор - "земля" - шлаковая ванна - электрод - токосъемник. В данном способе измеряют суммарную разность потенциалов, создаваемую электродвижущими силами одновременно протекающих окислительно-восстановительных реакций между "землей" и электродом-токосъемником, изолированным от "земли", окислительной газовой атмосферы и погруженным в оксидный расплав в шлаковом сифоне на расстоянии (1.1-2.2) • H толщины слоя металла на подине агрегата. Изобретение позволяет осуществлять контроль процесса жидкофазного восстановления оксидов железа по изменению электрической разности потенциалов, номинальное значение которой связано с технологическими режимами плавки и ситуациями, возникающими при переработке того или иного вида железосодержащего сырья, повысить надежность, воспроизводимость и точность анализируемого сигнала. 1 ил. 3 табл.

Description

Изобретение относится к черной металлургии, в частности к методам прямого получения железа восстановлением его из оксидов в жидкой шлаковой ванне.
В настоящее время в металлургической промышленности наряду с традиционными способами контроля технологического режима, основанными на химическом анализе продуктов плавки (металла, шлака, отходящих газов), измерении их температур используют способы, в которых фиксируются и анализируются электрические характеристики пирометаллургических агрегатов (ЭДС, сопротивление, сила тока) (см. книгу Измерения в промышленности. Справочник под ред. П. Профоса в 3-х томах, т. 1.- М.: Металлургия, 1990 г., с.326 - 389.
Известен способ контроля конвертерной плавки авт. св. СССР N 263625, кл. МПК C 21 C 5/30, 1970, включающий контроль окислительного потенциала конвертерной ванны в зависимости от величины ЭДС, возникающей между электродами, установленными в кладке конвертера на уровне шлака и металла. По мнению авторов, ЭДС, возникающая между электродами обусловлена электрохимическими процессами, происходящими в месте контакта электродов с конвертерной ванной. Кроме того, предлагается использовать электрод из борида циркония, в результате взаимодействия которого с кислородом, растворенным в шлаке и металле, поверхностный слой электродов перерождается с образованием двуокиси циркония, что приводит к получению электрохимической ячейки с самовосстанавливающимся электролитом, что, в свою очередь, обеспечивает возможность длительного ее использования.
К числу недостатков способа следует отнести то, что при контакте со шлаковой фазой, образующаяся на поверхности электрода двуокись циркония (ZrO2) интенсивно реагирует с оксидом железа (Fe2O3) с образованием шпинели ZrFe2O5, концентрация оксида железа в шлаковой ванне конвертера достигает 25 - 30% по массе, что приводит в конечном итоге к интенсивному растворению электрода.
Наиболее близким к предлагаемому способу по технической сущности является способ контроля шлакового режима конвертерной плавки, включающий измерение переменной составляющей ЭДС в электрической цепи фурма - ванна - "земля" - фурма (авт.св. СССР N 358368. кл. МКИ C 21 C 5/30).
Указанный способ позволяет осуществлять контроль периодов вспенивания и сворачивания шлака в конвертере. Вместе с тем к недостаткам данного способа следует отнести следующие:
в качестве электрода-токосъемника используется кислородная фурма конвертера;
невозможность надежного изолирования кислородной фурмы конвертера от "земли", и как следствие этого, низкое электрическое сопротивление участка цепи фурма - "земля";
необходимость использования магнитопровода для наведения переменной составляющей ЭДС во вторичной обмотке трансформатора, монтаж и установку которого необходимо вести на подвижной кислородной фурме, находящейся в условиях повышенных температур, вибраций и агрессивной газовой фазы;
невозможность использования в качестве электродов-токосъемников изделий из тугоплавких и благородных металлов (вольфрама, платины), поскольку непосредственный их контакт со шлакометаллической эмульсией в конвертере приводит к быстрому растворению электрода-токосъемника;
кроме того, данный способ характеризуется дискретностью измерений, информация об измерении шлакового режима поступает только в период контакта фурмы со шлакометаллической эмульсией.
Обнаруженные недостатки показывают, что переменная составляющая ЭДС, которая является источником информации о процессах шлакообразования, индуцируется не только потоком ионов газа и жидкости в реакционной зоне (малая величина падения напряжения участка фурма - "земля"), а в гораздо большей степени обмоткой трансформатора, через который протекает питающий переменный ток. Поэтому фиксируемая переменная составляющая ЭДС не может отражать однозначно и в полной мере процессы шлакообразования в конвертере, в частности величину вспенивания и увеличение жидкоподвижности шлака в последний период продувки.
Цель изобретения состоит в преодолении указанных недостатков, а также в повышении надежности контроля технологических процессов.
Сформулированная цель достигается тем, что в известном способе, включающем наведение и измерение переменной составляющей ЭДС в электрической цепи фурма - ванна конвертера - "земля" - фурма, согласно предлагаемому изобретению в качестве электрода-токосъемника используется изолированный от "земли", окислительной газовой атмосферы стержень из тугоплавкого металла, например вольфрама, погруженный под слой спокойного шлака в шлаковом сифоне на определенное расстояние, равное (1.1 - 2.2)•H мм от подины печи, где H - толщина слоя металла на подине агрегата, равная 400 мм, а измеряется суммарная постоянная разность потенциалов между шлаковой ванной и электродом-токосъемником, создаваемая электродвижущими силами одновременно протекающих окислительно-восстановительных реакций в пирометаллургическом агрегате.
Заявленная совокупность отличительных признаков не является известной на современном уровне развития техники, т.е. заявляемое техническое решение соответствует критерию "изобретательский уровень".
Основные окислительно-восстановительные реакции, протекающие в агрегате ПЖВ в объеме шлакового расплава, являющиеся источником вырабатываемой ЭДС, есть реакции газификации углерода кислородом нижних фурм (а), реакции восстановления оксидов железа (FeO и Fe2O3) (б, в) твердым углеродом, реакция газификации воды (г), и реакция окисления метана кислородом фурм нижнего ряда (д). Каждая из этих окислительно-восстановительных реакций вырабатывает определенную максимальную электродвижущую силу (табл. 1).
Общая интегральная ЭДС от окислительно-восстановительных реакций, протекающих в жидкой шлаковой ванне в агрегате ПЖВ есть алгебраическая сумма ЭДС каждой из них. Именно эта интегральная ЭДС создает разность потенциалов между шлаковой ванной и "землей".
Поскольку жидкий шлак (оксидный расплав) является хорошим проводником электричества, удельная электрическая проводимость которого составляет κ = 15 - 45 Ом•м, при T = 1400 - 1550oC. то его можно использовать как передатчик электрического сигнала на электрод-токосъемник и на фиксирующий прибор.
Так как создаваемая разность потенциалов между шлаковой ванной и "землей" связана непосредственно с суммарной ЭДС от окислительно-восстановительных реакций, протекающих в агрегате ПЖВ, которые, в свою очередь, определяют технологические ситуации и режимы работы печи, то величина разности потенциалов является весьма информативным параметром, позволяющим вести контроль технологических процессов при выплавке металла в агрегате ПЖВ.
Для снятия и анализа ЭДС, возникающей в период работы агрегата ПЖВ, и создаваемой ею разности потенциалов необходим электрод-токосъемник, который имеет непосредственный контакт с жидкой шлаковой ванной, должен быть изолирован от "земли" и окислительной газовой атмосферы.
Очевидно, что погружение электрода-токосъемника в зону интенсивного протекания окислительно-восстановительных реакций, в барботажный слой шлака 1 (чертеж), через амбразуру верхнего ряда фурм 2, или же в слой спокойного шлака через отверстие одной из фурм нижнего ряда 3 невозможно, поскольку наблюдается активное растворение вольфрамового электрода-токосъемника в каплях восстановленного железа.
Наиболее удачным местом размещения электрода-токосъемника является шлаковый отстойник (сифон) 4, поскольку в столбе жидкого шлака, находящегося в нем, концентрация оксидов железа невелика и составляет 1.5 - 2.5%, отсутствуют капли восстановленного металла и свободный кислород. Жидкий шлак в отстойнике имеет высокую температуру 1400 - 1550oC и, следовательно, высокую удельную электрическую проводимость и, наконец, имеет хороший электрический контакт через шлаковый переток 5 и находящийся на подине жидкий металл 6 с объемом жидкой шлаковой ванны в самой печи, в которой протекают окислительно-восстановительные реакции. Причем электрод-токосъемник опускается в шлаковый сифон на расстояние (1.1 - 2.2)•H от подины, где H - толщина слоя металла, остающаяся постоянной величиной в процессе работы агрегата, равной 40 см.
Выбор пределов (1.1 - 2.2)•H обусловлен следующими обстоятельствами. Электрод-токосъемник не должен контактировать с жидким металлом на подине агрегата, так как это приводит к растворению материала электрода-токосъемника. В то же время электрод-токосъемник должен располагаться на одном уровне с той частью шлакового перетока по которой оксидный расплав свободно сообщается с объемом жидкой шлаковой ванны в реакционном пространстве агрегата. Кроме того, по высоте столба жидкого шлака в шлаковом сифоне имеет место градиент температур. Специальные измерения, выполненные погружной вольфрам-рениевой термопарой, показали, что величина градиента может достигать 80oC (табл. 2), и только на уровне шлакового перетока распределение температуры остается постоянным, что в свою очередь повышает точность измерения суммарной разности потенциалов.
Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне осуществляется следующим образом.
После разогрева огнеупорной футеровки печи до необходимой температуры через заливочную воронку 7 в агрегат заливают небольшое количество жидкого шлака для ошлакования подины, затем производят заливку жидкого чугуна, который располагается внутри как показано на чертеже, образуя слой толщиной 40 см. После заливки чугуна в агрегат производится установка электрода-токосъемника через амбразуру 8 в шлаковый отстойник на расстояние от подины печи, равное (1.1 - 2.2)•H. Далее осуществляется окончательная заливка шлака, в результате осуществления которой электрод-токосъемник оказывается под слоем жидкого шлака. Жидкий шлак заливают выше уровня кислородных фурм нижнего ряда до начала процесса интенсивного барботажа. В этот момент по величинам разности потенциалов на приборе 9 фиксируется начало протекания окислительно-восстановительных процессов в шлаковой ванне, связанных с окислением метана, а также незначительного количества сульфидов, находящихся в заливаемом доменном шлаке. После этого в шлаковую ванну подают углеродистый восстановитель. Падая в слой барботируемого шлака, уголь накапливается в жидкой шлаковой ванне и взаимодействует с кислородом дутья, этот момент фиксируется по величинам регистрируемой разности потенциалов. По достижении определенного состава газовой фазы производится подача в жидкую шлаковую ванну железосодержащего сырья и угля в заданных пропорциях. Этот момент вновь фиксируется по изменившимся величинам разности потенциалов. Углерод газифицируется кислородом фурм нижнего ряда до CO, отходящий восстановительный газ, состоящий в основном из CO и H2 дожигается кислородом фурм верхнего ряда.
Пример: На агрегате жидкофазного восстановления проводят плавку железосодержащего сырья (кислородно-конвертерного шлама, доменного шлама, аглоруды, окалины, или их смесей) с использованием в качестве топлива и восстановителя угля марки OC. Контроль технологического процесса осуществляют по измерению величины разности потенциалов между шлаковой ванной и "землей" с помощью электрода-токосъемника.
В период заливки агрегата жидким чугуном и шлаком, до подачи в него первых порций угля в реакционном пространстве протекает только реакция (ж), описывающая процесс горения природного газа в кислороде, используемый для разогрева футеровки агрегата до нужных температур и поддержания заданного теплового режима в период заливки. При этом, фиксируемая разность потенциалов составляет + 350 мВ. По достижении поверхности заливаемого в печь шлака уровня кислородных фурм нижнего ряда и переходе в режим барботажа в агрегат подают первые порции угля, одновременно снимая расход природного газа на нижний ряд фурм. Интенсивно окисляясь кислородом фурм нижнего ряда, уголь по реакции (а) вносит свой вклад в положительную ЭДС. В этом случае, величина разности потенциалов уменьшается и составляет + 320 мВ. По завершении процесса накопления угля в шлаковой ванне до необходимого уровня в оксидный расплав осуществляется подача железосодержащего сырья, при этом величина разности потенциалов резко уменьшается от + 320 мВ, переходя через нулевое значение и попадая в отрицательную область изменения, характерную для каждого конкретного вида перерабатываемого железосодержащего сырья.
Отклонение от номинального значения величины разности потенциалов свидетельствует о нарушениях в технологии ведения процесса и указывает пути их преодоления.
Некоторые характеристики заявляемого способа и прототипа приведены в табл. 3.
Как видно из данных табл. 3 изобретение позволяет осуществлять непрерывный контроль процесса жидкофазного восстановления металла в течение всей кампании от момента запуска агрегата до его остановки.

Claims (1)

  1. Способ контроля технологических процессов с окислительно-восстановительными реакционными реакциями в шлаковой ванне, включающий погружение электрода-токосъемника в расплав, измерение ЭДС в электрической цепи электрод - токосъемник - измерительный прибор - "земля" - шлаковая ванна агрегата - электрод - токосъемник, отличающийся тем, что электрод-токосъемник электрически изолируют от корпуса агрегата и погружают его в зону спокойного шлака на глубину 1,1 - 2,2 толщин слоя металла на подине агрегата для измерения ЭДС от окислительно-восстановительных реакций.
RU97106657A 1997-04-22 1997-04-22 Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне RU2117051C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97106657A RU2117051C1 (ru) 1997-04-22 1997-04-22 Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97106657A RU2117051C1 (ru) 1997-04-22 1997-04-22 Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне

Publications (2)

Publication Number Publication Date
RU2117051C1 true RU2117051C1 (ru) 1998-08-10
RU97106657A RU97106657A (ru) 1999-04-10

Family

ID=20192329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97106657A RU2117051C1 (ru) 1997-04-22 1997-04-22 Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне

Country Status (1)

Country Link
RU (1) RU2117051C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Измерения в промышленности. Справочник / Под ред. П.Профоса. - М.: Металлургия, 1990, т.1, с.326 - 389. *

Similar Documents

Publication Publication Date Title
US5976345A (en) Method and apparatus for metal extraction and sensor device related thereto
CA2734217C (en) Measuring probes for measuring and taking samples with a metal melt
Turkdogan et al. Review of oxygen sensors for use in steelmaking and of deoxidation equilibria
RU2117051C1 (ru) Способ контроля технологических процессов с окислительно-восстановительными реакциями в шлаковой ванне
Liu et al. Measurement of FeO activity and solubility of MgO in smelting slags
Taskinen et al. Oxygen pressure in the Outokumpu flash smelting furnace—Part 1: Copper flash smelting settler
Woolley et al. Experimental evidence for electrochemical nature of the reaction between iron oxide in calcia-silica-alumina slag and carbon in liquid iron
US3505062A (en) Method for positioning an oxygen lance
KR100399238B1 (ko) 전로용 서브랜스 복합프로브 및 그 측정방법
JP2000192124A (ja) 高炉炉床部内の溶融体レベル測定方法およびその装置
Taskinen et al. Oxygen pressure in the Outokumpu flash smelting furnace—Part 2: the DON process
JP2004125566A (ja) 溶鋼層表面位置またはスラグ層厚さ或はその双方測定方法、その装置及びそれに用いられるプローブ
KR20000043436A (ko) 전로의 용강 탕면높이 측정방법
EP0285578B1 (en) Improvement of electrochemical devices for measuring the silicon content of hot metal
CN116829741A (zh) 熔融金属的脱硫方法
Wu et al. Desulfurization of molten steel with molten slag using the electrochemical method
RU2815873C1 (ru) Способ десульфурации расплавленного металла
RU2130080C1 (ru) Способ контроля количества твердого углеродсодержащего восстановителя в шлаковой ванне процесса жидкофазного восстановления
SU1022035A1 (ru) Датчик измерени активности кислорода к стали
JP2002131272A (ja) スラグ中酸素活量測定プローブおよびスラグ中酸素活量測定方法
KR20030054416A (ko) 전기로에서 용강의 탕면높이 측정장치
JP2000046509A (ja) スラグ厚み測定装置
Kapusta Sensing and modelling for oxygen lead softening
Björklund et al. Effect of temperature on oxygen activity during ladle treatment
RU2107108C1 (ru) Способ производства технического кремния в трехфазных рудовосстановительных электропечах

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100423