RU2110767C1 - Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости - Google Patents

Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости Download PDF

Info

Publication number
RU2110767C1
RU2110767C1 RU96103909A RU96103909A RU2110767C1 RU 2110767 C1 RU2110767 C1 RU 2110767C1 RU 96103909 A RU96103909 A RU 96103909A RU 96103909 A RU96103909 A RU 96103909A RU 2110767 C1 RU2110767 C1 RU 2110767C1
Authority
RU
Russia
Prior art keywords
gyroscope
angles
azimuthal
rotation
actual
Prior art date
Application number
RU96103909A
Other languages
English (en)
Other versions
RU96103909A (ru
Inventor
С.П. Редькин
Original Assignee
Акционерное общество "Раменское приборостроительное конструкторское бюро"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Раменское приборостроительное конструкторское бюро" filed Critical Акционерное общество "Раменское приборостроительное конструкторское бюро"
Priority to RU96103909A priority Critical patent/RU2110767C1/ru
Publication of RU96103909A publication Critical patent/RU96103909A/ru
Application granted granted Critical
Publication of RU2110767C1 publication Critical patent/RU2110767C1/ru

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

Способ аналитического гирокомпасирования может быть использован при создании гирокомпасов аналитического типа. Для аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости поворачивают корпус гироскопа на фактические азимутальные углы, отличающиеся от требуемых заданных углов на величину погрешности углового позиционирования гироскопа. Число фактических углов поворота должно быть нечетное в количестве не менее трех. Измеряют полученные фактические углы азимутального поворота гироскопа и соответствующие этим углам фактические сигналы с эталонного сопротивления гироскопа. Аналитически вычисляют курс с использованием значений заданных азимутальных углов поворота гироскопа и значений сигналов с эталонного сопротивления гироскопа соответствующих заданным углам поворота, которые определяют по предложенному аналитическому выражению. 2 ил.

Description

Изобретение относится к точному приборостроению, преимущественно гироскопическому, и может быть использовано при создании гирокомпасов и курсоуказывающих устройств аналитического типа.
Известен способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости (см., например, книгу В.И. Назарова и Г.А. Хлебникова "Гиростабилизаторы ракет". М., 1975, с. 191-196) согласно которому курсовое направление измерительной оси гироскопа определяют аналитически путем вычислений по результатам измерений горизонтальной составляющей угловой скорости вращения Земли. Для определения курса делают несколько поворотов гироскопа с азимутальной плоскостью с последующим измерением выходных сигналов датчика угловой скорости в этих угловых положениях, которые затем используют для аналитического вычисления курса. При этом отмечено, что одним из факторов, обуславливающим погрешность определения курса, является неточность разворота гироскопа в азимутальной плоскости на заданные углы, которых может быть два, три четыре и более.
За прототип взят способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости (см. статью S.P.Redkin "Analytical gyrocompassing by angular rate sensor based on dynamically tuned gyro". Saint Petersburg International Conference on Gyroscopic technology, May 1994).
В этом способе проводят предварительную настройку по выставке измерительных осей гироскопа в горизонт и привязке их к продольной оси объекта, включают гироскоп в режим работы с обратной связью по току датчика момента, определяют сигнал с эталонного сопротивления датчика угловой скорости в первом положении на угле измеряемого курса, поворачивают гироскоп в азимуте во второе положение вокруг собственной оси на 180 градусов, а затем в третье положение на 90 градусов и измеряют сигналы с гироскопа на этих углах, после чего искомый угол находят аналитически с использованием значений сигнала с эталонного сопротивления, полученных на этих углах, с помощью следующего соотношения
Figure 00000002

где
Ux1, Ux2, Ux3 - напряжения с эталонного сопротивления датчика угловой скорости соответственно в первом, втором и третьем положениях.
Известный способ аналитического гидрокомпасирования позволяет производить автокомпенсацию ряда погрешностей, обусловленных систематическими составляющими моментов, не связанных с корпусом гироскопа. Однако в данном способе не компенсируются погрешности, обусловленные разворотом гироскопа в азимуте на заданные углы. Погрешность определения курса в известном способе, реализованном с помощью ДУС на базе динамически настраиваемого гироскопа (ДНГ), в соответствии с исследованиями, проведенными в статье S.P. Redkin "Analytical gyrocompassiny by angular rate sensor based on dynamically tuned gyro", опубликованной в сборнике докладов "Saint Peterbury International Conference on Gyroscopic technology, May 1994, можно представить в следующем виде
Figure 00000003
,
где
Figure 00000004
,
где
Δψ - погрешность определения курса;
ψ - угол истинного курса;
υ,κ - углы тангажа и крена;
αббб - углы, характеризующие погрешность установки корпуса гироскопа на базе ДУС на объекте;
αнпнпнп - углы, характеризующие погрешность установки поворотной платформы гироскопа в корпусе гирокомпаса.
Figure 00000005
,
где:
U - угловая скорость вращения Земли;
φ - широта места;
K* - остаточная жесткость ДНГ;
δ23 - погрешность азимутального поворота гироскопа на заданные углы;
Ky - коэффициент усиления контура обратной связи гироскопа
Kу = Kдм Kус Kду;
Kду - крутизна датчика угла поворота;
Kус - коэффициент усиления усилителя обратной связи;
Kдм - крутизна датчика момента гироскопа; λ=TD+n1•N1D
Tд - момент сил аэродинамического сопротивления вращению ротора;
D - коэффициент демпфирования;
n1 - количество карданных рамок ДНГ;
N1 - скорость вращения ротора гироскопа;
H1 - кинетический момент гироскопа;
M x,y оп2,3 - изменение моментов по каналам X, Y при повороте корпуса ДНГ из положения 1 соответственно в положения 2, 3, обусловленное вибрацией опоры;
ΔM x,y а2,3 - изменение газодинамических моментов по каналам X, Y при повороте ДНГ из положения 1 соответственно в положения 2 и 3;
ΔM x,y мк2,3 - изменение моментов, обусловленных магнитным тяжением ротора корпуса гирокомпаса по каналам X, Y при повороте ДНГ из положения 1 в положения 2, 3;
ΔM x,y мс2,3 - изменение моментов, обусловленных тяжением магнитного поля Земли при повороте ДНГ из положения 1 в положения 2, 3;
rz - смещение центра масс ротора гироскопа вдоль оси собственного вращения;
g - ускорение свободного падения.
С помощью выражения (2) была рассчитана погрешность определения курса при следующих типичных параметрах:
H1 = 180 гсмс, K* = 0,3 гсм/рад, Kу = 200 гсм/рад, r2g = 8,6 • 10-4 гсм,
Figure 00000006
.
При этом δ23 и изменялись в диапазоне ± 0,0872 рад.
На фиг. 1 показана расчетная зависимость погрешности определения курса от величины погрешности азимутального поворота гироскопа на заданные углы от курсового угла ψ = 90o.
Из зависимости, представленной на фиг. 1, следует, что в известном способе определения курса имеет место существенная погрешность, обусловленная неточностью азимутального поворота гироскопа на заданные углы. Точность поворота гироскопа на заданные азимутальные углы обусловлена точностью применяемого устройства углового позиционирования гироскопа.
В имеющихся образцах аналитических гирокомпасов погрешность азимутального поворота гироскопа может достигать ± 30 угловых минут, что обуславливает погрешность определения курса ± 0,008734 рад.
Целью настоящего изобретения является повышение точности аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости.
Поставленная цель достигается тем, что в известном способе аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости, включающем предварительную выставку измерительных осей гироскопа в горизонт и их привязку к продольной оси объекта, работу гироскопа в режиме обратной связи по току датчика момента, поворот корпуса в азимуте на заданные углы, определяющие при этом сигнал с эталонного сопротивления гироскопа на заданных углах азимутального поворота и аналитическое вычисление курса с использованием полученных на заданных азимутальных углах сигналов с гироскопа, а определение сигнала с эталонного сопротивления гироскопа на заданных азимутальных углах его поворота проводят путем поворота корпуса гироскопа на эти углы, число которых выбирается нечетным, не менее трех, измеряют полученные фактические углы азимутального поворота корпуса гироскопа и соответствующие этим углам фактические сигналы с эталонного сопротивления гироскопа, а значения сигналов с эталонного сопротивления гироскопа, соответствующих заданным углам поворота, вычисляют по формуле:
Figure 00000007
,
где
u(γj) - сигнал с эталонного сопротивления гироскопа на заданном угле γj его азимутального поворота;
γj - заданный азимутальный угол поворота гироскопа;
Figure 00000008
;
m - число заданных азимутальных углов поворота гироскопа, требующееся для принятого алгоритма вычисления курсового угла;
u* * i ) - фактический сигнал с эталонного сопротивления гироскопа на фактическом угле γ * i его азимутального поворота;
γ * i - фактический азимутальный угол поворота гироскопа;
Figure 00000009
;
N = 2n + 1 - нечетное число фактических азимутальных углов поворота гироскопа.
По алгоритму известного способа задается желаемый азимутальный поворот гироскопа на угол γj . В результате погрешности углового позиционирования, обусловленного погрешностями устройства, реализующего эти повороты, гироскоп поворачивается на фактический угол γ * j .
γ * i j+Δγi (1) ,
где
Δγi - погрешность углового позиционирования гироскопа.
Устройство углового позиционирования гироскопа имеет в своем составе измеритель угла поворота гироскопа, исполнительный элемент в виде двигателя и электронного устройства, управляющего движением поворотной платформы, на которой установлен гироскоп. Датчик угла поворота выбирается исходя из требуемой точности поворота на желаемые заданные углы, и практически выбор и конструктивная реализация позволяют удовлетворять эти требования. Погрешность позиционирования обусловлена главным образом погрешностью остальных узлов устройства углового позиционирования гироскопа. Пусть в результате поворота гироскопа в азимуте имеется нечетное число N = 2n + 1 измерений сигнала ДУС на фактических углах γ * i , , измеренных с требуемой точностью.
u* * 0 ), u* * 1 ), u* * 2 ),..., u* * 2n )
При определении истинного курса по известному способу необходимо использовать значения u**) для промежуточного значения аргумента, то есть на желаемых задаваемых углах поворота.
В этом случае построим функцию u(γ), которая в узловых точках γ * 0 * 1 ,...,γ * n принимала бы значения u* * 0 ), u* * 1 ),..., , u* * 2n ) , а в остальных точках диапазона [0,2π] приближенно представляла бы фракцию u**) с требуемой для нашего случая точностью и при решении задачи вычисления курса вместо функции u**) будем использовать функцию u(γ). Для функциональной зависимости сигнала, снимаемого с ДУС, можно положить, что u(0)=u(2π), то есть эта функция является периодической. Будем искать рабочую функцию в виде следующего тригонометрического многочлена
Figure 00000010

Условия, налагаемые приближением, можно записать в виде
Figure 00000011

Рассмотрим равенства (3) и равенства (2) как систему однородных линейных алгебраических уравнений относительно коэффициентов при 1, cos kγ, sinkγ, coskγ * 0 , sinkγ * 0 , и при u(γ), u(γ * 0 ), u(γ * 2n )..
Эта система имеет нетривиальное решение. Следовательно, определитель системы равен нулю.
Figure 00000012

Раскрывая этот определитель по элементам первого столбца, получим:
u(γ)Δ-u* * 0 1+u* * 1 2-...-u(γ * 2n 2n+1 (5)
Из выражения (5) после соответствующих преобразований можно представить u(γ) для дискретных значений γj в следующем виде
Figure 00000013
,
где
u(γj) - сигнал с эталонного сопротивления гироскопа на заданном угле γj его азимутального поворота;
γj - заданный азимутальный угол поворота гироскопа,
Figure 00000014
;
u* * i ) - фактический сигнал с эталонного сопротивления гироскопа на фактическом угле γ * i его азимутального поворота;
γ * i - фактический угол поворота гироскопа;
Figure 00000015
;
N = 2n + 1 - нечетное число фактических азимутальных углов поворота гироскопа.
Таким образом, предлагаемый способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости имеет следующее основное отличие от известного способа: в операции определения сигнала с эталонного сопротивления гироскопа на заданных азимутальных углах его поворота сначала определяют промежуточные значения сигналов на полученных фактических углах поворота гироскопа, а затем в результате приближения на основе измеренных фактических углов поворота и соответствующих им сигналов с гироскопа определяют с помощью аналитической зависимости сигнала с гироскопа на желаемых задаваемых углах азимутального поворота.
На фиг. 1 показана теоретическая зависимость погрешности определения истинного курса от погрешности задания азимутальных углов поворота гироскопа на курсовом угле ψ = 90o.
На фиг. 2 показана зависимость погрешности определения истинного курса при различных погрешностях δ2,3 задания азимутальных углов поворота гироскопа в случае известного и предлагаемого способа.
С помощью компьютера проводилось сравнительное моделирование погрешности определения курса известным и предлагаемым способами.
На фиг. 2 показаны зависимости 1 и 2 погрешности определения истинного курса при различных погрешностях δ2,3 задания азимутальных углов поворота гироскопа соответственно в случае известного и предлагаемого способа. Из сравнения этих зависимостей видно, что применение предлагаемого способа позволяет существенно повысить точность определения истинного курса по сравнению с известным способом.
Так, в известном способе при изменении курса в диапазоне углов [0,2π] курсовая погрешность изменяется в пределах трубки шириной Δ = 0,0035 рад при погрешности углового позиционирования гироскопа в азимуте 24 угловые минуты, а при применении предлагаемого способа погрешность определения курса при этом практически отсутствует.
Использование предлагаемого способа аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости обеспечивает по сравнению с существующим способом существенное повышение точности его определения.
При этом применение предлагаемого способа уменьшает стоимость разработки и конструкции гироскопа за счет уменьшения требований к точности устройства узлового позиционирования гироскопа в азимуте.

Claims (1)

  1. Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости, включающий предварительную выставку измерительных осей гироскопа в горизонт и их привязку к продольной оси объекта, работу гироскопа в режиме обратной связи по току датчика момента, поворот корпуса гироскопа в азимуте на заданные углы, определение при этом сигнала с эталонного сопротивления гироскопа на заданных углах азимутального поворота и аналитическое вычисление курса с использованием полученных на заданных азимутальных углах сигналов с эталонного сопротивления гироскопа, отличающийся тем, что определение сигнала с эталонного сопротивления гироскопа на заданных азимутальных углах его поворота проводят путем поворота корпуса гироскопа на эти углы, число которых выбирается нечетным не менее трех, измеряют полученные фактические углы азимутального поворота корпуса гироскопа и соответствующие этим углам фактические сигналы с эталонного сопротивления гироскопа, а значения сигналов с эталонного сопротивления гироскопа, соответствующих заданным углам поворота, вычисляют по формуле
    Figure 00000016

    где u(γj) - - сигнал с эталонного сопротивления гироскопа на заданном угле γj его азимутального поворота;
    γj- заданный азимутальный угол поворота гироскопа j = 1, m,
    m - число заданных азимутальных углов поворота гироскопа, требующееся для принятого алгоритма вычисления курсового угла;
    u* * i ) - - фактический сигнал с эталонного сопротивления гироскопа на фактическом угле γ * i его азимутального поворота;
    γ * i - фактический азимутальный угол поворота гироскопа, i = 1, N;
    N = 2n + 1 - нечетное число фактических азимутальных углов поворота гироскопа.
RU96103909A 1996-02-27 1996-02-27 Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости RU2110767C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96103909A RU2110767C1 (ru) 1996-02-27 1996-02-27 Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96103909A RU2110767C1 (ru) 1996-02-27 1996-02-27 Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости

Publications (2)

Publication Number Publication Date
RU96103909A RU96103909A (ru) 1998-04-20
RU2110767C1 true RU2110767C1 (ru) 1998-05-10

Family

ID=20177473

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96103909A RU2110767C1 (ru) 1996-02-27 1996-02-27 Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости

Country Status (1)

Country Link
RU (1) RU2110767C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698567C1 (ru) * 2018-12-04 2019-08-28 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Способ гирокомпасирования с применением датчика угловой скорости
RU2737383C1 (ru) * 2019-11-13 2020-11-27 Акционерное общество "Серпуховский завод "Металлист" Способ гирокомпасирования с применением датчика угловой скорости
RU2753900C1 (ru) * 2020-08-27 2021-08-24 Акционерное общество "Серпуховский завод "Металлист" Способ гирокомпасирования с применением датчика угловой скорости

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.P.REDKIN. ANALYTICAL GYROCOMPASSING BY ANGULAR RATE SENSOR BASED ON DYNAMICALLY TUNED GYRO.I SAINT PETERSBURG INTERNATIONAL CONFERENCE ON GYROSCOPIC TECHNOLOGY. MAY 1994. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698567C1 (ru) * 2018-12-04 2019-08-28 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Способ гирокомпасирования с применением датчика угловой скорости
RU2737383C1 (ru) * 2019-11-13 2020-11-27 Акционерное общество "Серпуховский завод "Металлист" Способ гирокомпасирования с применением датчика угловой скорости
RU2753900C1 (ru) * 2020-08-27 2021-08-24 Акционерное общество "Серпуховский завод "Металлист" Способ гирокомпасирования с применением датчика угловой скорости

Similar Documents

Publication Publication Date Title
JP5165423B2 (ja) 方法、装置
US4756088A (en) Instruments for monitoring the direction of a borehole
US4583178A (en) Strapped-down inertial system for a vehicle
RU2558724C2 (ru) Устройство диагностического комплекса для определения положения трубопровода и способ определения относительного перемещения трубопровода по результатам двух и более инспекционных пропусков диагностического комплекса для определения положения трубопровода
US4458426A (en) Gyroscopic apparatus
EP0079288B2 (en) Gyroscopic apparatus
CN101187568A (zh) 多位置捷联寻北系统方位效应的标定方法
CN101701825A (zh) 高精度激光陀螺单轴旋转惯性导航系统
US4442723A (en) North seeking and course keeping gyro device
Xu et al. A novel hybrid calibration method for FOG-based IMU
RU2256881C2 (ru) Способ определения параметров ориентации и навигации и бесплатформенная инерциальная навигационная система для быстровращающихся объектов
RU2110767C1 (ru) Способ аналитического гирокомпасирования с помощью гироскопического датчика угловой скорости
CN104949669A (zh) 一种基于磁阻传感器扩大光纤陀螺量程的方法
EP2341314B1 (en) Six-direction orienting device
RU2098766C1 (ru) Способ определения истинного курса с помощью гироскопического датчика угловой скорости
RU2176780C1 (ru) Способ определения истинного курса с помощью двухканального гироскопического датчика угловой скорости
RU2507392C1 (ru) Способ определения зенитного угла и азимута скважины и гироскопический инклинометр
RU2189564C1 (ru) Способ гирокомпасирования с применением гироскопического датчика угловой скорости и комбинированной компенсации его дрейфа
RU2526585C2 (ru) Способ определения угла ориентации стоячей волны в твердотельном волновом гироскопе
CN216977925U (zh) 光纤陀螺仪分辨率的测量系统、可读存储介质
RU2111454C1 (ru) Инклинометр
Liu et al. Angular motion decoupling and attitude determination based on high dynamic gyro
RU2782334C1 (ru) Способ определения параметров ориентации объекта при помощи полуаналитической инерциальной навигационной системы с географической ориентацией осей четырехосной гироплатформы
RU2188392C1 (ru) Способ определения истинного курса наклонного объекта с применением гироскопического датчика угловой скорости
US3198940A (en) Inertial navigation system