RU2109841C1 - Способ нанесения антикоррозионных покрытий - Google Patents

Способ нанесения антикоррозионных покрытий Download PDF

Info

Publication number
RU2109841C1
RU2109841C1 RU97113405A RU97113405A RU2109841C1 RU 2109841 C1 RU2109841 C1 RU 2109841C1 RU 97113405 A RU97113405 A RU 97113405A RU 97113405 A RU97113405 A RU 97113405A RU 2109841 C1 RU2109841 C1 RU 2109841C1
Authority
RU
Russia
Prior art keywords
metal
ultrasonic
deposition
frequency
vibrations
Prior art date
Application number
RU97113405A
Other languages
English (en)
Other versions
RU97113405A (ru
Inventor
В.И. Шевелкин
О.Б. Шуляковский
В.П. Булатов
Original Assignee
Шевелкин Валерий Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шевелкин Валерий Иванович filed Critical Шевелкин Валерий Иванович
Priority to RU97113405A priority Critical patent/RU2109841C1/ru
Application granted granted Critical
Publication of RU2109841C1 publication Critical patent/RU2109841C1/ru
Publication of RU97113405A publication Critical patent/RU97113405A/ru

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

изобретение может быть использовано для нанесения антикоррозионных покрытий на металлы, керамику, пластмассы и другие твердые материалы. Покрытие наносят путем плазменного напыления, или осаждения из газовой фазы, или вакуумного испарения, причем перед нанесением покрытия в металле возбуждают ультразвуковые колебания и осуществляют ультразвуковые воздействия одновременно с нанесением покрытия. Ультразвуковые колебания вводят посредством акустического концентратора, что позволяет инициировать в основном металле кавитирующие явления, способствующие разрушению перегородок между порами, трещинами, дефектами и соответственно более полному заполнению их защитными металлами. Способ позволяет значительно повысить качество покрытий, снизить энергоемкость. 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к физике твердого тела, акустике, механике и может быть использовано для нанесения антикоррозионных покрытий на металлы, керамику, пластмассы и другие твердые материалы с использованием упругого миграционного эффекта и кавитации.
Известен способ нанесения антикоррозионных покрытий, при котором используют плазменное напыление, а также осаждение из газовой фазы или вакуумного испарения металлов на защищаемую поверхность металлов. (Кречмар Э. Напыление металлов, керамики и пластмасс. - М., 1968, с. 56). Известный способ трудоемок, нетехнологичен, не принимает во внимание структурные особенности материала изделия и не использует его резонансные свойства.
Известен способ нанесения антикоррозионных покрытий путем плазменного напыления, или осаждения газовой фазы, или вакуумного испарения металлов на защищаемую поверхность, причем перед нанесением покрытия возбуждают в металле ультразвуковые колебания, определяют частоту колебаний металла и осуществляют ультразвуковые воздействия одновременно с нанесением покрытия (патент РФ N 2026887, кл. С 23 С 4/00, 1995).
Известный способ не позволяет эффективно использовать упругий миграционный эффект и кавитацию для разрушения перегородок между порами, трещинами, дефектами в основном металле, что значительно снижает срок службы изделий.
Цель изобретения - устранить эти недостатки.
Поставленная цель достигается тем, что согласно способу производят местный нагрев от 40 до 80oС и ультразвуковые колебания вводят посредством акустического волноводного концентратора, изготовленного в виде металлического стержня полуволновой длины с сечением плавно меняющимся по экспоненте и имеющим коэффициент усиления 12-15, что дает возможность варьировать интенсивность ультразвуковых колебаний в пределах 0,5-0,7 от величины растягивающих напряжений основного металла и осуществлять в нем инициирование кавитирующих явлений, посредством которых разрушают перегородки между порами, трещинами, дефектами, что в свою очередь, способствует более полному заполнению наносимого антикоррозионного покрытия внутрь пор, трещин, дефектов, имеющихся в основном металле.
Частоту ультразвукового воздействия выбирают исходя из условий волнового подобия и кристаллического строения основного металла, так как для приведения в возбужденное состояние локального участка изделия необходимо выполнить условие
Л длина волны = Л размер кристалла металла
Нижний диапазон ультразвукового воздействия при условии, что размеры пор, трещин, дефектов основного металла превышают 3,0 мм, выбирают равным 0,6 мГц.
Направление распространения ультразвуковой волны совпадает с направлением простирания пор, дефектов, трещин в основном металле. Местный нагрев основного металла производят частями, чередуя полосу нагрева с ненагретой полосой, причем шаг между ними выбирают равным 30-40 см, чтобы вызвать температурные градиенты на пути распространения ультразвуковой волны, способствующие появлению кавитации в порах, трещинах и дефектах для более полного заполнения их защитным материалом.
На фиг. 1 приведена схема реализации способа, где 1 - изделие. 2 - ультразвуковой излучатель с волноводным акустическим концентратором, 3 - усилитель мощности, 4 - генератор импульсов, 5 - микропроцессор для управления процессом ультразвукового воздействия на изделие, 6 - устройство для нанесения антикоррозионных покрытий на поверхность изделия.
На фиг. 2 показано изменение радиуса кавитационного пузырька во времени при постоянном давлении Ро = 105 Па на частоте 500000 кГц, где 1 - Ро = 106 Па, 2 - Ро = 5х105 Па; 3 - Ро = 106 Па.
Способ осуществляют следующим образом. Посредством ультразвукового излучателя, изготовленного в виде волноводного акустического концентратора, дающего усиление амплитуды от 12 до 15, возбуждают в материале изделия 1 схемой из генератора 4, усилителя мощности 3, управляемых микропроцессором 5, ультразвуковые колебания в широком диапазоне частот от 0,6 до 50 мГц, исходя из условий волнового подобия и кристаллического строения материала изделия, так как для приведения локального участка материала изделия необходимо, чтобы длина волны была соизмерима с размерами неоднородностей, слагающих материал изделия.
При скорости продольных колебаний в материале изделия, равной 5000 м/с и размерах кристаллов слагающих материал в пределах 0,1-3,0 мм частоты ультразвукового воздействия будут следующими.
При длине волны 0,1 мм : (5000 м/с)/(0,0001 м) = 50 мГц
При длине волны 3,0 мм : (5000 м/с)/(0,003 м) = 1,5 мГц.
При условии, что размеры пор и трещин могут превышать 3,0 мм, нижний диапазон частоты ультразвукового воздействия выбирают не менее 1,5 мГц,, а 0,6 мГц.
Интенсивность ультразвуковых колебаний плавно поднимают от минимально возможного уровня до величины 0,5-0,7 от величины разрушающих напряжений материала на растяжение в совокупности с нанесением на поверхность защитных материалов в расплавленном или другом физическом состоянии - аннодирование, пассивирование и т. д. Если изделие, например обсадные трубы в скважине, работают в контакте с агрессивными средами (кислоты и другие вещества), то вначале изделие приводят в возбужденное состояние в диапазоне частот от 0,6 до 50 мГц, колебания осуществляют в течение времени, при котором деформации сжатия материала сменят деформации растяжения. После этого переходят на частоту ультразвукового воздействия, равную частоте собственных колебаний материала изделия, и ультразвуковые воздействия осуществляют в совокупности с нанесением защитного покрытия в течение времени, при котором концентрация газовых компонентов истекающих из пор, трещин, дефектов материала снизится до первоначального уровня (до нанесения защитного покрытия).
Для увеличения эффективности способа направление ультразвукового воздействия выбирают таким образом, чтобы оно совпадало с направлением простирания пор, дефектов, трещин, выявленных рентгенометрическим анализом. Для инициирования в основном металле кавитирующих явлений, способствующих разрушению перегородок между порами, трещинами, дефектами и способствующих более полному заполнению их защитными материалами, производят местный нагрев изделия с шагом 30-40 см до температуры 40-80oC. Температурные градиенты приводят в зоне разрежения ультразвуковой волны к появлению кавитирующих взрывов, что способствует резкому увеличению проницаемости защитных материалов в поры, трещины, дефекты и более прочному сцеплению защитных материалов с основным металлом. Во время процесса нанесения защитных покрытий измеряют температуру материала изделия и выбирают оптимальный режим нанесения покрытия с таким условием, чтобы избежать негативных явлений индуцирования в материале изделия остаточных напряжений для чего до, во время и после ультразвукового воздействия измеряют в материале изделия скорости распространения продольной и двух сдвиговых волн с взаимно ортогональной поляризацией и, зная плотность материала, упругие постоянные второго и третьего порядка (контакты Мурнагана а, в, с) определяют из соотношений нелинейной теории упругости начальные напряжения, действующие в материале изделия в процессе нанесения антикоррозионных покрытий, и исходя из напряженно-деформированного состояния материала выбирают оптимальный режим нанесения защитных покрытий и скорость его нанесения на поверхность изделия.
Таким образом, приведение локального участка материала изделия в возбужденное состояние посредством ультразвуковых воздействий в широком диапазоне частот способствует более полному заполнению пустот, дефектов и трещин защитным материалом, что в конечном итоге увеличивает срок службы изделия и снижает энергоемкость процесса на 30-40% по сравнению с имеющимися технологиями, поскольку вибрации, развиваемые с использованием волноводного акустического концентратора, позволяют защитному материалу проникнуть вглубь материала и более полно заполнить поры, трещины, дефекты, повысив при этом прочность материала на 10-20% и увеличив срок службы изделия в 3-5 раз.
Предлагаемым способом наносят защитные покрытия на любые твердые материалы, пористость которых находится в пределах 1,0% и выше. Причем чем выше пористость материала, тем эффективнее работает предложенный способ, в особенности в резонансном режиме.
Сущность способа состоит в том, что на пути распространения ультразвуковой волны возникают волны сжатия и растяжения, способствующие тому, что флюиды - расплав защитного материала, попадающий в поры, трещины, дефекты изделия, мигрируют на несколько порядков быстрее, чем в отсутствие упругой волны. В особенности этот эффект проявляется на частоте резонанса - частоте собственных колебаний материала изделия, что, в свою очередь, способствует перераспределению поля упругих напряжений на пути распространения ультразвуковой волны; дегазации локального участка материала изделия, то есть истечению газов из пор, дефектов, трещин под воздействием вибраций; проявлению кавитации, носящей вероятностный характер и проявляющейся при определенных начальных и граничных условиях, основными из которых являются:
- совпадение направления распространения ультразвуковой волны с направлением простирания пор и трещин в материале изделия;
- соизмеримость длины волны и размеров пор и трещин в материале;
- близость частоты ультразвуковых импульсов к частоте собственных колебаний флюидов - расплава защитного материала, попадающего в поры и трещины материала изделия;
- температурные градиенты на пути распространения ультразвуковой волны;
- наличие твердых включений в расплаве, наносимом защитном материале твердых частиц размерами 0,01-0,03 мм, что способствует зарождению кавитирующих явлений на пути распространения ультразвуковой волны, причем в зоне разрежения возникают гидроразрывы - мельчайшие пузырьки, заполненные паром и газом, и схлопывающиеся в зоне сжатия ультразвуковой волны.
Преимущества способа состоят в том, что возбуждение в материале изделия ультразвуковых колебаний с интенсивностью 0,5-0,7 от величины разрушающих напряжений позволяют: закачать в материал упругую энергию в выбранном диапазоне частот в режиме накопления и тем самым управлять состоянием и свойствами материала в процессе нанесения антикоррозионных покрытий; повысить эффективность способа за счет более полного заполнения пор, трещин и дефектов изделия и тем самым повысить не только прочность материала, но и увеличить срок его службы; снизить энергоемкость способа нанесения защитных покрытий на 20-40%; увеличить проницаемость материала изделия за счет инициирования кавитирующих явлений, так как кавитация способствует разрушению перегородок между порами, дефектами, трещинами материала изделия.
Использование предлагаемого способа позволит значительно повысить качество наносимых покрытий, снизить энергоемкость и продлить срок службы изделий по сравнению с имеющимися классическими технологиями нанесения защитных покрытий, не использующими упругий миграционный эффект, кавитацию и структурно-механические свойства материала изделия.
Пример 1. Для нанесения защитных покрытий на использование 8 ультразвуковых излучателей с концентраторами, размещенных в шахматном порядке на одной из технологических деталей судна. С использованием генератора 3Г-6 в материале изделия возбуждали ультразвуковые колебания с последующим их усилением усилителем мощности, собранным на транзисторе КТ8331А, и управляли интенсивностью ультразвуковых колебаний и частотой возбуждаемых колебаний с использованием микропроцессора. Вначале определили частоту собственных колебаний материала изделия, для чего частоту колебаний плавно повышали от 60 кГц с шагом через 1,0 кГц и измеряли амплитуду колебаний на каждой частоте. Максимальный уровень сигнала соответствует собственной частоте колебаний, которая была равна 560 кГц. И на этой частоте все 8 ультразвуковых излучателей синхронно работали - возбуждали колебания в материале изделия в течение 18 мин. Затем плазменным напылением производили напыление хрома. Специально выполненный образец 25х25 см из того же материала подвергался тем же операциям, что и остальное изделие. Образец помещался в 50%-ный раствор серной кислоты. Аналогичный образец из того же материала, но без ультразвуковой обработки подвергался нанесению защитного материала и помещался в тот же раствор. После 16 сут непрерывного пребывания в растворе 50%-ной серной кислоты образец, подверженный ультразвуковой обработке, остался без изменения, а аналогичный образец без ультразвуковой обработки подвергся коррозии на 80% его поверхности. Прочность материала в образце, подверженном ультразвуковой обработке, на 22% превышала аналогичные характеристики такого образца без обработки ультразвуком.

Claims (5)

1. Способ нанесения антикоррозионных покрытий, включающий возбуждение в защищаемом металле ультразвуковых колебаний, определение частоты колебаний металла и нанесение покрытия методом плазменного напыления, или осаждения из газовой фазы, или вакуумного испарения при одновременном ультразвуковом воздействии с частотой соответствующей собственной частоте колебаний металла, отличающийся тем, что ультразвуковые колебания возбуждают при помощи акустического волноводного концентратора, выполненного в виде металлического стержня полуволновой длины с сечением, плавно меняющимся по экспоненте, и коэффициентом усиления 12 - 15, после определения частоты колебаний металла интенсивность ультразвуковых колебаний поднимают до 0,5 - 0,7 от величины разрушающих напряжений материала при растяжении и обрабатывают металл в течение времени, необходимого для смены деформаций сжатия на деформации растяжения, а при нанесении покрытия проводят местный нагрев защищаемого металла до температуры 40 - 80oС.
2. Способ по п.1, отличающийся тем, что частоту ультразвукового воздействия выбирают из условий волнового подобия и кристаллического строения металла при условии Л длина волны = Л размер кристалла металла для локального участка металла.
3. Способ по п.2, отличающийся тем, что нижнее значение ультразвукового воздействия при размере пор, трещин, дефектов основного металла, превышающем 3,0 мм, выбирают равным 0,6 мГц.
4. Способ по п.1, отличающийся тем, что направление распространения ультразвуковой волны выбирают совпадающим с направлением простирания пор, дефектов, трещин основного металла.
5. Способ по п.1, отличающийся тем, что местный нагрев защищаемого металла проводят, чередуя полосу нагрева с ненагретой полосой, причем шаг между ними выбирают равным 30 - 40 см.
RU97113405A 1997-08-13 1997-08-13 Способ нанесения антикоррозионных покрытий RU2109841C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97113405A RU2109841C1 (ru) 1997-08-13 1997-08-13 Способ нанесения антикоррозионных покрытий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97113405A RU2109841C1 (ru) 1997-08-13 1997-08-13 Способ нанесения антикоррозионных покрытий

Publications (2)

Publication Number Publication Date
RU2109841C1 true RU2109841C1 (ru) 1998-04-27
RU97113405A RU97113405A (ru) 1998-11-27

Family

ID=20196044

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97113405A RU2109841C1 (ru) 1997-08-13 1997-08-13 Способ нанесения антикоррозионных покрытий

Country Status (1)

Country Link
RU (1) RU2109841C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207946A (zh) * 2018-09-12 2019-01-15 杭州联芳科技有限公司 一种镍钛合金支架表面处理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207946A (zh) * 2018-09-12 2019-01-15 杭州联芳科技有限公司 一种镍钛合金支架表面处理方法
CN109207946B (zh) * 2018-09-12 2022-05-20 杭州联芳科技有限公司 一种镍钛合金支架表面处理方法

Similar Documents

Publication Publication Date Title
US6266836B1 (en) Process and device for continuous ultrasonic washing of textile
US7828901B2 (en) Method and apparatus to detect nanometer particles in ultra pure liquids using acoustic microcavitation
US6395096B1 (en) Single transducer ACIM method and apparatus
US20200346254A1 (en) Ultrasonic concrete form cleaning method
US3421939A (en) Method and apparatus for cleaning a pipe with sonic energy
Woodside et al. Acoustic force distribution in resonators for ultrasonic particle separation
Mobaraki et al. Enhanced sludge dewatering based on the application of high-power ultrasonic vibration
RU2109841C1 (ru) Способ нанесения антикоррозионных покрытий
US20020108631A1 (en) Single-transducer ACIM method and apparatus
RU2026887C1 (ru) Способ нанесения антикоррозионных покрытий
KR100250402B1 (ko) 반응 용액에 투입된 열간 압연판의 가장자리부의 산세척 방법 및 장치
Gallego-Juarez New technologies in high-power ultrasonic industrial applications
Lais et al. Application of high power ultrasonics for fouling removal in submerged structures
RU2112221C1 (ru) Способ ультразвукового контроля уровня жидких сред в резервуарах
RU2218273C1 (ru) Способ пропитки заготовок из древесины
JP2004337800A (ja) 超音波キャビテーション発生装置
RU2109610C1 (ru) Способ наплавки изделий износостойкими материалами
RU2010701C1 (ru) Способ пропитки и сушки капиллярно-пористых материалов и устройство для его осуществления
JP4123746B2 (ja) 流体処理装置
Desmet et al. All-optical investigation of the lowest-order antisymmetrical acoustic modes in liquid-loaded membranes
Takada et al. Control of plasma and cavitation bubble in liquid-phase laser ablation using supersonic waves
Tsuji et al. 3P2-15 Development of air-coupled ultrasonic probe using air-column and piezoelectric composite
RU2749343C1 (ru) Способ удаления индикаторной проникающей жидкости с поверхности стеклокерамических изделий с использованием ультразвуковых волн
SU1692672A1 (ru) Способ ультразвуковой обработки
SU1593812A1 (ru) Способ электрохимической обработки