RU2108591C1 - Анализатор частотно-временного распределения мощности - Google Patents

Анализатор частотно-временного распределения мощности Download PDF

Info

Publication number
RU2108591C1
RU2108591C1 RU96107534A RU96107534A RU2108591C1 RU 2108591 C1 RU2108591 C1 RU 2108591C1 RU 96107534 A RU96107534 A RU 96107534A RU 96107534 A RU96107534 A RU 96107534A RU 2108591 C1 RU2108591 C1 RU 2108591C1
Authority
RU
Russia
Prior art keywords
inputs
output
phase
outputs
filter
Prior art date
Application number
RU96107534A
Other languages
English (en)
Other versions
RU96107534A (ru
Inventor
А.А. Алексеев
Э.Б. Ханов
И.Л. Бережных
С.В. Химин
Original Assignee
Военная академия связи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Военная академия связи filed Critical Военная академия связи
Priority to RU96107534A priority Critical patent/RU2108591C1/ru
Application granted granted Critical
Publication of RU2108591C1 publication Critical patent/RU2108591C1/ru
Publication of RU96107534A publication Critical patent/RU96107534A/ru

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к области измерительной техники и может быть использовано для построения анализаторов спектра параллельного типа. Целью изобретения является разработка анализатора частотно-временного распределения спектра мощности, обеспечивающего более высокую достоверность распознавания анализируемых процессов. Анализатор содержит параллельно включенные каналы обработки, каждый из которых состоит из фильтра 1, линии задержки 2, двух умножителей 3 и 4, двух фазовращателей на 90o 5 и 6, сумматора 7, устройства вычитания 8, амплитудного детектора 9 и синхронно-фазового демодулятора 10. Повышение достоверности распознавания сигналов достигается увеличением полноты их спектрального описания за счет определения огибающей и фазы распределения временной мощности сигналов. 1 ил.

Description

Изобретение относится к области измерительной техники и может быть использовано для построения анализаторов спектра параллельного типа.
Известны анализаторы спектра параллельного типа, принцип построения которых основан на методе фильтрации (см., например, Методы и техника обработки сигналов при физических измерениях. Т. 1: Ж.Макс, М.: Мир, 1983, с. 244-253). Известен также анализатор спектра, основанный на цифровой обработке сигналов (см., например, А.С. СССР N 1404968, кл. G 01 R 23/16, опубл. 1988).
Недостатками вышеуказанных устройств является невысокая точность анализа частотных параметров при низких отношениях сигнал/шум (менее 10 дБ).
Наиболее близким аналогом к заявленному устройству является анализатор частотно-временных распределений мощности (А.С. СССР N 1739310, кл. G 01 R 23/16, опубл. 1992), содержащий параллельно включенные каналы обработки, каждый из которых состоит из фильтра, линии задержки, двух умножителей, двух фазовращателей на 90o и сумматора. При этом входы фильтра и линии задержки соединены в параллель и являются входами канала обработки, выход фильтра подключен к входам первых фазовращателя и умножителя, а выход линии задержки - к второму входу первого умножителя и входу второго фазовращателя, выходы фазовращателей подключены соответственно к первому и второму входам второго умножителя, а выходы умножителей подключены к соответствующим входам сумматора, выход которого является выходом канала обработки.
Недостатком прототипа является невысокая достоверность распознавания анализируемых процессов из-за неполноты спектрального описания из структуры, в частности отсутствия информации о фазовых параметрах.
Целью изобретения является разработка анализатора частотно-временного распределения мощности, обеспечивающего более высокую достоверность распознавания анализируемых процессов.
Поставленная цель достигается тем, что в известном анализаторе частотно-временного распределения мощности, содержащем N соединенных параллельно каналов обработки, каждый из которых содержит фильтр, линию задержки, первый и второй умножители и сумматор, причем входы фильтра и линии задержки объединены и являются входами канала обработки, выход фильтра соединен с входом первого фазовращателя и первым входом первого умножителя, а выход линии задержки соединен с вторым входом первого умножителя и входом второго фазовращателя, выходы первого и второго фазовращателей подключены соответственно к первому и второму входам второго умножителя, выходы умножителей подключены к соответствующим входам сумматора, выход которого является выходом канала обработки, дополнительно в каждый канал обработки введены вычитатель, амплитудный детектор и синхронно-фазовый демодулятор. Первый и второй входы вычитателя подключены соответственно к выходам первого и второго умножителей, а выход вычитателя соединен с входами амплитудного детектора и синхронно-фазового демодулятора, выходы которых являются дополнительными выходами канала обработки.
Таким образом, за счет введения амплитудного детектора, синхронно-фазового демодулятора и устройства вычитания и соответствующих связей между ними и обеспечивается повышение достоверности распознавания процессов.
Структурная схема анализатора представлена на чертеже.
Анализатор частотно-временного распределения мощности содержит параллельно включенные каналы обработки, каждый из которых состоит из фильтра 1, линии задержки 2,двух умножителей 3 и 4, двух фазовращателей на 90o 5 и 6, сумматора 7, устройства вычитания 8, амплитудного детектора 9 и синхронно-фазового демодулятора 10. Входы фильтра 1 и линии задержки 2 объединены и являются входами канала обработки, выход фильтра 1 соединен с входом фазовращателя 5 и первым входом умножителя 3, а выход линии задержки 2 соединен с вторым входом умножителя 3 и входом фазовращателя 6. Выходы фазовращателей 5 и 6 подключены соответственно к первому и второму входам умножителя 4, а выходы умножителей 3 и 4 подключены соответственно к первому и второму входам сумматора 7 и первому и второму входам устройства вычитания 8. Выход устройства вычитания 8 соединен с выходами амплитудного детектора 9 и синхронно-фазового демодулятора 10. Выходы сумматора 7, амплитудного детектора 9 и синхронно-фазового демодулятора 10 являются выходами канала обработки.
Частоты настройки и полосы пропускания фильтра 1 подбираются так, чтобы фильтры перекрывали всю полосу анализа с необходимой разрешающей способностью. Фильтр 1 может быть собран по известным схемам, например, описанным в книге (Д. Кар. Проектирование и изготовление электронной аппаратуры. М.: Мир, 1980, с. 286).
Время задержки линии задержки 2 выбирается равным времени установления колебания в фильтре 1. Линия задержки строится по схеме последовательно соединенных Т- или П-образных контуров (В.В.Никитченко, Функциональные узлы адаптивных компенсаторов помех, ч. 1. Л.: ВАС, 1990, с. 142). При этом количество контуров определяется временем задержки, а их параметры - частотой настройки полосового фильтра 1.
Фазовращатели на 90o 5 и 6 могут быть выполнены на операционном усилителе по схеме, обеспечивающей преобразование Гильберта. Выбор фазовращателя в качестве преобразователя Гильберта обусловлен тем, что для узкополосных сигналов нелинейного сдвига фаз фазовращателем относительно частоты можно пренебречь. Поэтому фазовый сдвиг всех гармоник сигнала постоянен и не зависит от частоты, т. е. происходит преобразование Гильберта. Одна из таких схем описана (В.В.Никитченко. Функциональные узлы адаптивных компенсаторов помех, ч. 1. Л.: ВАС, 1990, с. 125). Сумматор 7 и устройство вычитания 8 выполняются на базе операционного усилителя по схеме, описанной в (В.В.Никитченко. Функциональные узлы адаптивных компенсаторов помех, ч. 2. Л.: ВАС, 1990, с. 28). Слагаемые сигналы подаются на неинвертирующее плечо, вычитаемые на разные плечи операционного усилителя.
Умножители 3 и 4 строятся по схеме аналогового перемножителя прямого действия, описанной в (В.В.Никитченко, Функциональные узлы адаптивных компенсаторов помех, ч.1. Л.: ВАС, 1990, с. 95).
Амплитудный детектор 9 может быть выполнен на базе интегральной микросхемы по схеме, описанной в (В.В.Никитченко. Функциональные узлы адаптивных компенсаторов помех, ч.2. Л.: ВАС, 1990, с. 37).
Синхронно-вазовый демодулятор 10 может выполняться по схеме демодулятора сигналов с фазовой автоподстройкой частоты (А.Ф. Фомин, А.И. Хорошавин, О.И. Шелухин. Аналоговые и цифровые синхронно-фазовые измерители и демодуляторы. М.: Радио и связь, 1987, с.47).
Анализатор частотно-временного распределения мощности работает следующим образом. Входной сигнал Z/(t) подается параллельно на входы всех каналов обработки. На выходе фильтра 1 формируется гармоническая составляющая.
X(f,t) = a(f)cos2πft+b(f)sin2πft, ,
где
a/(f) и b(f) - четная и нечетная части спектра Фурье реализации сигнала соответственно. Сигнал X(f,t) поступает на умножитель 3, где перемножается с входным сигналом Z(t), задержанным линией задержки 2 на время установления колебания в фильтре 1. С выхода фильтра 1 сигнал X(f,t) поступает также на фазовращатель на 90o o5, где преобразуется в
Figure 00000002
,
с выхода линии задержки 2 сигнал Z(t) поступает на фазовращатель 6, на выходе которого осуществляется преобразование Гильберта
Figure 00000003
. Сигналы
Figure 00000004
перемножаются в умножителе 4. Сумма произведений
Figure 00000005
,
сформированная на выходе сумматора 7, представляет собой срез частотно -временного распределения активной мощности сигнала Z(t), а их разность.
Figure 00000006
,
сформированная на выходе устройства вычитания 8, - срез частотно-временной реактивной мощности сигнала. Огибающая распределения переменной мощности на выходе амплитудного детектора 9 и распределения фаз на выходе синхронно-фазового демодулятора 10 частотно-временного представления Pp(f,t) в данном случае являются аналогами огибающей и фазы переменной мощности сигнала.
Таким образом, совокупность сигналов на трех выходах всех каналов обработки дает соответственно срезы частотно-временных распределений активной мощности, огибающей переменной мощности и фаз переменной мощности для заданного момента времени.

Claims (1)

  1. Анализатор частоты-временного распределения мощности, содержащий N соединенных параллельно каналов обработки, каждый из которых содержит фильтр, линию задержки, первый и второй умножители и сумматор, причем входы фильтра и линии задержки объединены и являются входами канала обработки, выход фильтра соединен с входом первого фазовращателя и первым входом первого умножителя, выход линии задержки соединен с вторым входом первого умножителя и входом второго фазовращателя, выходы первого и второго фазовращателей подключены соответственно к первому и второму входам второго умножителя, выходы умножителей подключены к соответствующим входам сумматора, выход которого является выходом канала обработки, отличающийся тем, что дополнительно в каждый канал обработки введены вычитатель, амплитудный детектор и синхронно-фазовый демодулятор, первый и второй входы вычитателя подключены соответственно к выходам первого и второго умножителей, выход вычитателя соединен с входами амплитудного детектора и синхронно-фазового демодулятора, выходы которых являются дополнительными выходами канала обработки.
RU96107534A 1996-04-18 1996-04-18 Анализатор частотно-временного распределения мощности RU2108591C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU96107534A RU2108591C1 (ru) 1996-04-18 1996-04-18 Анализатор частотно-временного распределения мощности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96107534A RU2108591C1 (ru) 1996-04-18 1996-04-18 Анализатор частотно-временного распределения мощности

Publications (2)

Publication Number Publication Date
RU2108591C1 true RU2108591C1 (ru) 1998-04-10
RU96107534A RU96107534A (ru) 1998-05-20

Family

ID=20179446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96107534A RU2108591C1 (ru) 1996-04-18 1996-04-18 Анализатор частотно-временного распределения мощности

Country Status (1)

Country Link
RU (1) RU2108591C1 (ru)

Similar Documents

Publication Publication Date Title
US20200011911A1 (en) High-precision frequency measuring system and method
CN109975771B (zh) 基于信号三阶相位差分的宽带数字信道化方法
JPH0750136B2 (ja) 周波数測定方法
US5117179A (en) Swept signal analysis instrument and method
RU2522779C1 (ru) Установка и способ для неразрушающего контроля дефектов в проверяемом изделии посредством вихревых токов
US3344349A (en) Apparatus for analyzing the spectra of complex waves
US4504785A (en) Sampling spectrum analyzer
CN108710027A (zh) 通道间相位差、幅度差的高精度测量方法
US4809203A (en) Hybrid analog-digital filter
RU2108591C1 (ru) Анализатор частотно-временного распределения мощности
US4794556A (en) Method and apparatus for sampling in-phase and quadrature components
JPH02216988A (ja) アダプティブ櫛形フィルタ
US3369176A (en) Intermodulation test system whose frequency is governed by an r.f. two tone signal
CN107430159A (zh) 用于无涟波ac功率确定的系统及方法
CN1120566C (zh) 用于减小电路产生的失真的控制系统的跳频导频技术
JP3696379B2 (ja) 多入力振幅・位相測定方法および装置
JPH10126217A (ja) デシメーションフィルタ
SU1739310A1 (ru) Анализатор частотно-временного распределени спектра мощности
RU2794344C1 (ru) Способ энергетического обнаружения сигнала с его компенсацией в дополнительном канале
JPH10142273A (ja) ネットワークアナライザ
US7705609B2 (en) Phase frequency distortion measurement system
RU2582625C1 (ru) Фазометр
SU703913A1 (ru) Устройство дл разнесенного приема фазоманипулированных сигналов
SU792597A1 (ru) Устройство дл разнесенного приема с когерентным сложением сигналов
EP2363961A1 (en) Sampling