RU2107050C1 - Сырьевая смесь для изготовления поризованных строительных изделий - Google Patents

Сырьевая смесь для изготовления поризованных строительных изделий Download PDF

Info

Publication number
RU2107050C1
RU2107050C1 RU97107200A RU97107200A RU2107050C1 RU 2107050 C1 RU2107050 C1 RU 2107050C1 RU 97107200 A RU97107200 A RU 97107200A RU 97107200 A RU97107200 A RU 97107200A RU 2107050 C1 RU2107050 C1 RU 2107050C1
Authority
RU
Russia
Prior art keywords
clay
sawdust
moisture content
additive
moisture
Prior art date
Application number
RU97107200A
Other languages
English (en)
Other versions
RU97107200A (ru
Inventor
В.Г. Безродный
В.Г. Виземан
А.В. Долгирев
Л.В. Иванов
Е.Л. Кальварский
В.В. Суровцева
Original Assignee
Закрытое акционерное общество "Победа-Кнауф"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Победа-Кнауф" filed Critical Закрытое акционерное общество "Победа-Кнауф"
Priority to RU97107200A priority Critical patent/RU2107050C1/ru
Application granted granted Critical
Publication of RU2107050C1 publication Critical patent/RU2107050C1/ru
Publication of RU97107200A publication Critical patent/RU97107200A/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)

Abstract

Изобретение используется для производства строительных керамических поризованных изделий, например дырчато-поризованного кирпича, камней, черепицы, крупноразмерных блоков. Сырьевая смесь для изготовления поризованных строительных изделий, включающая глину и волокнистую гигроскопическую добавку растительного происхождения, содержит эту добавку с влажностью не менее минимального значения точки насыщения волокон добавки при следующем соотношении компонентов, об.%: волокнистая гигроскопическая добавка растительного происхождения 28,6 - 50, глина 50 - 71,4. При этом сырьевая смесь может содержать древесные опилки с влажностью 23% - 38% или торф с влажностью 23% - 55%. 2 з.п.ф-лы, 2 табл.

Description

Изобретение относится к промышленности строительных материалов, а именно к сырьевым массам для изготовления керамических поризованных изделий, и может быть использовано при производстве строительных керамических поризованных изделий, например дырчато-поризованного кирпича, керамических камней, черепицы, крупноразмерных блоков.
Известна керамическая масса для изготовления стеновой керамики, включающая легкоплавкую глину, песок и уголь [1].
В данной керамической массе песок является отощающей добавкой, которая уменьшает усадку и внутренние напряжения материала в процессе сушки сырца, при котором, как известно, потеря влаги сырца происходит в основном на втором и третьем этапах сушки [2, 3, 4]. Наибольшая усадка глинистых материалов наблюдается на втором этапе сушки. Она совпадает с периодом интенсивного удаления влаги и развитием капиллярных сил, которые тем выше, чем дисперснее и эластичнее глиномасса. Величина усадки при сушке зависит от числа водяных пленок между частицами глины. Поэтому введение песка, а также любого другого крупнозернистого отощителя будет уменьшать воздушную усадку смеси [4]. Уменьшение воздушной усадки за счет введения отощителя не избавляет смесь от усадок, которые являются еще достаточно существенными для образования сильных усадочных напряжений, приводящих к появлению в изделиях, полученных экструзией, трещин.
Кроме того, использование в качестве отощителя крупнозернистого материала - песка приведет к уменьшению поризованности готовых изделий вследствие заполнения песком воды пор.
Таким образом, изделия, изготовленные из указанной массы, будут обладать повышенной чувствительностью материала к усадке, приводящей к появлению трещин на полуфабрикате и внутри его и, следовательно, низкой механической прочностью, а также низкой поризованностью, обуславливающей снижение морозостойкости и повышение теплопроводности.
Известна также масса для изготовления кирпича, включающая глину 90% и топливную добавку растительного происхождения - древесные опилки 10% [5].
Данная масса за счет содержания топливной добавки растительного происхождения - древесных опилок обеспечит повышение трещинностойкости материала в процессе сушки. Это обусловлено тем, что древесные опилки, являясь длинноволокнистым материалом в сравнении с величиной зерен глинистых частиц, как бы армируют керамическую массу, повышая ее сопротивление разрыву, а вместе с тем и трещинностойкость в сушке.
Однако несмотря на наличие в указанной глиномассе эффективного средства повышения трещинностойкости - древесных опилок, последние из-за содержания в данной смеси в небольшом количестве (10%) относительно глины (90%), а также из-за низкой влажности опилок, которая равна значению формовочной влажности, не смогут оказать существенного влияния на влагосодержание глины, и отбор влаги в процессе сушки будет происходить в основном из водяных пленок между пластинками глины, что приведет к появлению усадочных напряжений в сырце и возникновению трещин.
Кроме того, поскольку процесс испарения на стадии сушки будет определяться влагосодержанием глины, то объем пор воды в глине будет также уменьшаться в процессе сушки, что приведет к снижению поризованности изделия в целом после обжига и выгорания опилок из-за небольшого их количества в смеси. Все это приведет к ухудшению технико-эксплуатационных характеристик изделия.
В качестве прототипа выбрана керамическая масса, описанная в способе изготовления строительной керамики, включающая, мас.%: хромсодержащий шлам гальванического производства 0,5-7; волокнистая гигроскопическая добавка растительного происхождения (опилки, торф) 5-15; бой 3-8; глина - остальное [6].
Недостатком известной керамической массы, как и в предыдущем аналоге, является ее повышенная чувствительность к усадочным явлениям в процессе сушки, приводящая к снижению трещинностойкости материала и его прочности при нормальной формовочной влажности вследствие малого содержания в указанной глиномассе данной добавки растительного происхождения (опилок или торфа) и ее недостаточной влажности.
Кроме того, так как данная добавка растительного происхождения (опилки или торф) является в данной смеси выгорающей добавкой, то в процессе обжига такая добавка в опилочно(торфо-) шламовой смеси приведет к образованию в черепке относительно крупных и неравномерно распределенных пор, приводящих к снижению поризованности изделия, и, следовательно, к снижению морозостойкости и теплофизических характеристик изделия.
Техническим результатом изобретения является улучшение технико-эксплуатационных характеристик изделия за счет обеспечения равномерного распределения усадочных явлений в материале в процессе сушки и увеличения поризованности изделия.
Указанный технический результат достигается тем, что сырьевая смесь для изготовления поризованных строительных изделий, включающая глину и волокнистую гигроскопическую добавку растительного происхождения, согласно изобретению содержит волокнистую гигроскопическую добавку растительного происхождения с влажностью не менее минимального значения точки насыщения волокон этой добавки при следующем соотношении компонентов, об.%: волокнистая гигроскопическая добавка заданной влажности 28,6 - 50; глина 50 - 71,4.
При этом сырьевая смесь может содержать в качестве волокнистой гигроскопической добавки заданной влажности древесные опилки с влажностью 23-38%.
Кроме того, сырьевая смесь может также содержать в качестве волокнистой гигроскопической добавки заданной влажности торф с влажностью 23-55%.
Использование в данной сырьевой смеси волокнистой гигроскопической добавки растительного происхождения с указанной заданной влажностью и в указанном количестве позволяет за счет абсорбционных и гигроскопических свойств, определяемых ее влажностью, обеспечить равномерный отбор влаги из глины в процессе сушки сырца. Это способствует снижению усадочных явлений в материале и повышению его трещинностойкости и прочности изделия по сравнению с прототипом.
Кроме того, влагообразная добавка с заданной влажностью обеспечит сохранение воды пор в глиномассе на стадии сушки, что также приведет к увеличению пористости изделия в целом по сравнению с прототипом.
Содержание добавки растительного происхождения с влажностью менее минимального значения влажности точки насыщения волокон данной добавки не позволит получить сырьевую смесь необходимой формовочной влажности 18-22% для формования сырца экструзией, так как в процессе приготовления сырьевой смеси за счет гигроскопичности добавка самопроизвольно будет поглощать формовочную влагу из глины, пока она не достигнет минимального значения влажности точки насыщения, что потребует поведения сырьевой смеси до необходимой формовочной влажности для насадки экструзии.
Присутствие компонентов в смеси в указанных количествах позволяет увеличить трещинностойкость и поризованность изделия, приводящих к улучшению технико-эксплуатационных свойств по сравнению с прототипом. Нижняя граница содержания добавки определяется максимально предельной прочностью готового изделия с минимальным пределом поризации материала, определяемым его теплопроводностью, а верхняя граница - минимально возможной прочностью изделий, используемых в отечественных строительных конструкциях.
Содержание в указанной смеси древесных опилок или торфа с заданной влажностью обеспечивает за счет абсорбционных и гигроскопических свойств указанные ранее эффекты. Выход значения влажности соответствующей добавки за низкий предел не позволит получить требуемой формовочной влажности, а при превышении верхнего предела появится капиллярная влага, которая повысит пластинчатость глины и сырьевой смеси в целом, что облегчит формование экструзии, но полученные изделия не смогут держать заданную форму.
Указанные отличия предлагаемой сырьевой смеси от прототипа позволяют сделать вывод о соответствии изобретения критерию "новизна".
Анализ других технических решений из уровня техники показал, что они не имеют признаков, совпадающих с отличительными признаками изобретения, что позволяет сделать вывод о соответствии последнего критерию "изобретательский уровень".
Применение предлагаемого изобретения в области гражданского и промышленного строительства в производстве строительных поризованных изделий позволяет сделать вывод о его соответствии критерию "промышленная применимость".
Приготовление сырьевой смеси осуществляют следующим образом.
Исходные компоненты смеси: комовая кембрийская глина (ТУ 571-001-23368990-94) и волокнистая гигроскопическая добавка растительного происхождения, например древесные опилки (ГОСТ 15320-78), предварительно обработанные, подают в глиномешалку в указанных количествах 28,6-50 и 50-71,4 об.% соответственно. Предварительная обработка комовой кембрийской глины заключается в измельчении ее в глинорыхлителе и на вальцах грубого помола, а древесные опилки с влажностью не менее 23%, например 23%, то есть не ниже минимального значения влажности точки насыщения волокон, находящейся в пределах 23-35% для древесины, просеивают на грохоте с отверстиями не более 8 х 8. Более крупные частицы проходят доизмельчение в дробилке.
Влагообразные опилки и глина проходят в глиномешалке после смешивания ряд операций измельчения и усреднения в бегунах, вальцах тонкого помола и протирочном устройстве, что обеспечивает в итоге необходимое перемешивание и растирание массы перед попаданием ее в пресс. При этом гигроскопическая влага опилок не отжимается и не дает своего вклада в формовочную влагу смеси. Поэтому для приобретения смесью необходимой формовочной влажности 18-22% ее доувлажняют, так как глина в смеси с гигроскопическими опилками может потерять необходимую пластичность, что происходит либо на стадии перемешивания в глиномешалке, либо при перетирании ее в бегунах.
Древесные опилки с влажностью не менее значения 23%, соответствующего минимальному значению точки насыщения волокон опилок, легко растираются на стадии массоподготовки в глиноподобное состояние и образуют с глиной хорошо перетертую и усредненную массу.
Готовую массу подают к формовочному автомату для формования сырца изделия, которые затем подвергают сушке и обжигу.
Древесные опилки являются волокнистым гигроскопическим материалом, способным поглощать воду даже из воздуха. Вследствие гигроскопичности они меняют свою влажность в зависимости от влажности окружающей их среды [7]. Точка насыщения волокон древесины определяет состояние древесины, в котором отсутствует капиллярная вода и содержится только гигроскопическая.
Капиллярная влага может быть изъята из опилок путем отжатия. По степени влажности различают опилки: мокрые с влажностью 35% и выше, воздушно-сухие с влажностью 15-2-% и комнатно-сухие 8-13%. Так как влажность древесных опилок больше формовочной влажности и составляет не менее 23%, что соответствует минимальному значению точки насыщения волокон, то второй период сушки сырца из данной сырьевой смеси будет определяться влагосодержанием древесных опилок и процессом удаления из них влаги, а не из глины, то есть усушкой древесных опилок. Последняя происходит только при испарении гигроскопической влаги. Процесс усушки древесных опилок подобен процессу сушки глинистого материала. При испарении гигроскопической влаги уменьшается толщина водяных оболочек, мицеллы сближаются друг с другом, и уменьшаются размеры частиц опилок.
Коэффициент объемной усушки составляет 0,2-0,75%, линейная усушка в радиальном направлении 3-6%, а в тангенциальном 7-12%. В общем случае линейные усушки древесных опилок соответствуют линейным воздушным усадкам кембрийской глины, а коэффициент объемной усадки смеси соответствует 0,7-0,8%.
Учитывая гигроскопичность древесных опилок, последние при снижении значения критической влажности полуфабриката до 13-15% (III-й период сушки) равномерно отбирают влагу из объема глины, стремясь к влажности, соответствующей значению точки насыщения.
Древесные опилки, воспринимая на себя действие усадочных (усушечных) напряжений, выполняют как бы амортизирующую роль в процессах, протекающих при сушке полуфабриката из предлагаемой смеси. Поэтому трещины, возникающие в результате усадочных напряжений, будут появляться на древесных опилках, распределенных равномерно в глиномассе, сохраняя в целостности образующийся глиняный каркас будущего готового изделия. С другой стороны, при этом сохраняется объем пор воды испарения глины и, следовательно, пористость готового изделия, что обеспечивает появление требуемых пор уже на стадии сушки. Кроме того, уменьшение опасности возникновения трещин глиняного каркаса высушенных изделий предполагает выполаживание фактической скорости сушки изделия [8] и повышение этих скоростей за счет увеличения температуры сушки древесных опилок, которая составляет 100-105oС. В процессе обжига сырца из такой сырьевой массы при 950-980oС происходит выгорание древесных опилок с образованием множества дополнительных к порам воды глиняного черепка пор от опилок, равномерно распределенных по объему, увеличивая поризованность изделия и уменьшая его среднюю плотность.
В случае использования торфа с заданной влажностью в качестве волокнистой гигроскопической добавки при приготовлении сырьевой смеси последний из-за такой же гигроскопичности, как и у древесных опилок, проявляет на стадии сушки и обжига действия, аналогичные вышеуказанным действиям древесных опилок, что в итоге также обеспечит повышение трещинностойкости и поризованности изделия из указанной сырьевой массы.
Из полученной сырьевой массы были приготовлены составы 1 и 2 с древесными опилками (или торфом) с заданной влажностью, приведенные в табл. 1.
В табл. 2 представлены технико-эксплуатационные характеристики поризованных керамических камней, изготовленных из указанных составов.
Как следует из табл. 2, керамические изделия, например камни, полученные из предлагаемых смесей, дают 100%-ный выход годных изделий, обладают достаточно высокими прочностными характеристиками, высокой морозостойкостью, низкой средней плотностью и хорошими показателями теплопроводности в кладке, выполненные по ГОСТ 530-95.
По своим теплотехническим свойствам - эквивалентному коэффициенту теплопроводности и коэффициенту теплопроводности в кладке керамические камни относятся к группе эффективных и сверхэффективных строительных материалов. Полученные значения обеспечивают уровень тепловой защиты ограждающих конструкций по требованиям 1 этапа "Постановления" N 18-81 от 11.08.95 при кладке наружных стен толщиной 640 мм в условиях строительства в г. С.-Петербурге и Ленинградской области.
Таким образом, предлагаемая сырьевая смесь позволяет обеспечить равномерное распределение усадочных явлений в материале сырца при его сушке, и, следовательно, повышение трещинностойкости материала по сравнению с прототипом, а также увеличение поризованности изделия за счет обеспечения однородности глиномассы и увеличения поризованности в процессе сушки. Все это приводит к улучшению технико-эксплуатационных свойств изделия, а именно: повышению прочности и морозостойкости и снижению теплопроводности и средней плотности по сравнению с прототипом.

Claims (2)

1. Сырьевая смесь для изготовления поризованных строительных изделий, включающая глину и волокнистую гигроскопическую добавку растительного происхождения, отличающаяся тем, что она содержит волокнистую гигроскопическую добавку растительного происхождения с влажностью не менее минимального значения точки насыщения волокон этой добавки при следующем соотношении компонентов, об.%:
Волокнистая гигироскопическая добавка заданной влажности - 28,6 - 50
Глина - 50 - 71,4
2. Смесь по п.1, отличающаяся тем, что она содержит в качестве волокнистой гигроскопической добавки заданной влажности древесные опилки с влажностью 23 - 38%.
3. Смесь по п.1, отличающаяся тем, что она содержит в качестве волокнистой гигроскопической добавки заданной влажности торф с влажностью 23 - 55%.
RU97107200A 1997-05-06 1997-05-06 Сырьевая смесь для изготовления поризованных строительных изделий RU2107050C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97107200A RU2107050C1 (ru) 1997-05-06 1997-05-06 Сырьевая смесь для изготовления поризованных строительных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97107200A RU2107050C1 (ru) 1997-05-06 1997-05-06 Сырьевая смесь для изготовления поризованных строительных изделий

Publications (2)

Publication Number Publication Date
RU2107050C1 true RU2107050C1 (ru) 1998-03-20
RU97107200A RU97107200A (ru) 1998-09-10

Family

ID=20192585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97107200A RU2107050C1 (ru) 1997-05-06 1997-05-06 Сырьевая смесь для изготовления поризованных строительных изделий

Country Status (1)

Country Link
RU (1) RU2107050C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576685C1 (ru) * 2015-03-02 2016-03-10 Юлия Алексеевна Щепочкина Масса для производства кирпича
RU2590237C1 (ru) * 2015-03-02 2016-07-10 Юлия Алексеевна Щепочкина Сырьевая смесь для производства керамзита
RU2620677C1 (ru) * 2015-12-31 2017-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Сырьевая смесь для изготовления керамического кирпича
RU2629031C1 (ru) * 2016-06-29 2017-08-24 Андрей Иосифович Колтаков Способ получения керамического камня для бань и саун

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Роговой М.И. Технология искусственных пористых заполнителей и керамики. - М.; Стройиздат, 1974, с. 224. 2. Мороз И.И. Технология строительной керамики. - Киев, Высшая школа, 1972, с. 66 - 73. 3. Баскаков С.В. Сушка кирпича. - М., Издательство литературы по строительству, 1966, с. 67 - 73. 4. Кингери У.Д. Введение в керамику. - М., Издательство литературы по строительству, М., 1967, с. 40 - 43. 5. Техническая информация ЦНИИТЭСТРОМ, серия "Промышленность керамических стеновых материалов и пористых заполнителей. - М., 1968, вып. 7, с. 12 - 13, табл. 2. 6. *
7. Комар Л.Г. Строительные материалы и изделия. - М.: Высшая школа, 1967, с. 400 - 406. 8. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1973, с. 609. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576685C1 (ru) * 2015-03-02 2016-03-10 Юлия Алексеевна Щепочкина Масса для производства кирпича
RU2590237C1 (ru) * 2015-03-02 2016-07-10 Юлия Алексеевна Щепочкина Сырьевая смесь для производства керамзита
RU2620677C1 (ru) * 2015-12-31 2017-05-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Сырьевая смесь для изготовления керамического кирпича
RU2629031C1 (ru) * 2016-06-29 2017-08-24 Андрей Иосифович Колтаков Способ получения керамического камня для бань и саун

Similar Documents

Publication Publication Date Title
CA1197863A (en) Boards and sheets
KR100353745B1 (ko) 석고/셀룰로즈성섬유흡음성타일조성물
JPS6251908B2 (ru)
RU2107050C1 (ru) Сырьевая смесь для изготовления поризованных строительных изделий
US6488761B1 (en) Hydraulic hardened foamed product and a method of producing the same
SU826952A3 (ru) Способ изготовления керамических плиток 1
RU2277520C1 (ru) Способ изготовления стеновых керамических изделий (варианты)
JPS63107849A (ja) 無機質硬化体の製造方法
DE3614943C1 (en) Use of glazed perlite grains for producing tiles
US4438055A (en) Method of making a ceramic article and articles made by the method
JP2008511436A (ja) 異なる材料に基づいた仕切りを生産するための組成物の製造のための改善された方法、組成物、及びこのように得られた仕切り
US3310614A (en) Method for making burned clay building products
EP0012407B1 (de) Verfahren zur Herstellung eines Porosierungsmittels
RU2422409C1 (ru) Способ производства поризованного строительного кирпича
DE4200981A1 (de) Porosierter ziegel sowie verfahren zu seiner herstellung
SU1300013A1 (ru) Сырьева смесь дл изготовлени пористого бетона
EP0012408A1 (de) Verfahren zur Herstellung von porösen keramischen Formkörpern
DE19654532A1 (de) Porosierter Ziegel und Verfahren zu seiner Herstellung
FR2507592A1 (fr) Procede de fabrication d'un materiau de construction leger
SU1518321A1 (ru) Сырьева смесь дл изготовлени строительных изделий
RU7102U1 (ru) Установка для производства поризованного конструкционного камня (кирпича) и поризованный конструкционный камень (кирпич)
RU2355665C1 (ru) Способ изготовления керамического теплоизоляционного материала
SU1196349A1 (ru) Арболитова смесь
US1392127A (en) Insulating and building material and method of producing same
DE3326276A1 (de) Verfahren zum herstellen von ziegeln oder platten aus leichtkeramischen granulat