RU2101564C1 - Адсорбционный насос - Google Patents

Адсорбционный насос Download PDF

Info

Publication number
RU2101564C1
RU2101564C1 RU95105611A RU95105611A RU2101564C1 RU 2101564 C1 RU2101564 C1 RU 2101564C1 RU 95105611 A RU95105611 A RU 95105611A RU 95105611 A RU95105611 A RU 95105611A RU 2101564 C1 RU2101564 C1 RU 2101564C1
Authority
RU
Russia
Prior art keywords
adsorbent
pump
coil
layer
pumping
Prior art date
Application number
RU95105611A
Other languages
English (en)
Other versions
RU95105611A (ru
Inventor
С.Т. Болдарев
В.М. Мишачев
Original Assignee
Физический институт им.П.Н.Лебедева РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Физический институт им.П.Н.Лебедева РАН filed Critical Физический институт им.П.Н.Лебедева РАН
Priority to RU95105611A priority Critical patent/RU2101564C1/ru
Publication of RU95105611A publication Critical patent/RU95105611A/ru
Application granted granted Critical
Publication of RU2101564C1 publication Critical patent/RU2101564C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Использование: в вакуумной и криогенной технике и может быть использован во многих областях науки и техники для получения глубокого вакуума, а также в криогенной технике для криосорбционной откачки рабочего тела, в частности для откачки 3He в рефрижераторах растворения. Сущность изобретения: система охлаждения адсорбента разделяет внутреннее пространство насоса на две смежные винтовые полости, одна из которых сообщена с трубопроводом откачки и служит для привода откачиваемого газа, а вторая заполнена адсорбентом. Этим обеспечивается эффективное двустороннее охлаждение адсорбента и малые гидравлические потери за счет наличия газовых зазоров с обеих сторон слоя адсорбента. Такая конструкция системы охлаждения в сочетании с малой толщиной слоя адсорбента позволяет значительно повысить скорость откачки насоса и увеличить его сорбционную емкость за счет эффективного использования объема насоса. 1 ил.

Description

Изобретение относится к вакуумной и криогенной технике и может быть использовано как в вакуумных насосах для получения глубокого вакуума, так и в рефрижераторах криосорбционной откачки рабочего тела, в частности для откачки 3He в рефрижераторах растворения.
Известны адсорбционные вакуумные насосы, содержащие корпус и расположенные в нем лотки в виде дисков с адсорбентом, прижатым к ним сетками. К лоткам с тепловым контактом прикреплен змеевик для хладагента, подаваемого для охлаждения адсорбента [1]
Основными недостатками насосов такого типа являются односторонний доступ откачиваемого газа к адсорбенту и большой мертвый объем над адсорбентом, размещенным на лотках. Это снижает скорость откачки и уменьшает сорбционную емкость насоса.
Известен также адсорбционный вакуумный насос [2] принятый нами за прототип, состоящий из цилиндрического корпуса с трубопроводом откачки, в котором адсорбент расположен внутри корпуса между его стенкой и металлической сеткой, изогнутой в форме звезды. Лучи звезды образуют каналы для прохода откачиваемого газа. Насос имеет систему охлаждения адсорбента жидким хладагентом (например, гелием), подаваемым по трубе из внешней ванны в рубашку корпуса.
К недостатком этого насоса относится прежде всего неравномерное охлаждение адсорбента, приводящее к уменьшению скорости откачки, а также избыточные потери холода как при теплопередаче через стенку корпуса, так и при захолаживании насоса после регенерации.
Задача изобретения повышение скорости откачки и увеличение сорбционной емкости насоса.
Для достижения необходимого технического результата в адсорбционном насосе, состоящем из цилиндрического корпуса с расположенным в нем между корпусом и сеткой адсорбентом, трубопровода откачки и системы охлаждения адсорбента, последняя выполнена из теплопроводного материала в виде размещенного внутри корпуса змеевика, соосного корпусу и оребренного двуслойной сеткой таким образом, что слои сетки прикреплены двум соседним виткам змеевика с образованием ограниченной сеткой винтовой полости для прохода откачиваемого газа с шагом, равном шагу змеевика, и толщиной слоя адсорбента между соседними сетками оребрения в пределах 2 5 характерных размеров гранул адсорбента, при этом диаметр оребрения змеевика (df) и зазор между слоями адсорбента (δ) выбраны из следующих соотношений:
Figure 00000002

где
db внутренний диаметр корпуса, м;
df диаметр оребрения, м;
Δ толщина слоя адсорбента между соседними сетками оребрения, м;
d зазор между слоями адсорбента, м;
ds внутренний диаметр навивки змеевика, м;
t = Δ + δ шаг навивки змеевика, м;
L длина корпуса насоса, м.
Благодаря такому исполнению обеспечивается легкий доступ газа к адсорбенту, более эффективное (двустороннее в слое) охлаждение адсорбента и более полное использование объема насоса за счет сокращения мертвого объема, что, соответственно, способствует повышению скорости откачки и увеличению сорбционной емкости насоса. Кроме того, насос конструктивно прост и технологичен в изготовлении.
На чертеже представлена конструкция адсорбционного насоса.
Адсорбционный насос содержит цилиндрический корпус 1 с внутренним диаметром db и длиной L, адсорбент 2, трубопровод откачки 3, соединенный с откачиваемым объектом (на чертеже не показан), и систему 4 охлаждения адсорбента 2, выполненную из теплопроводного материала и состоящую из соосно размещенного внутри корпуса 1 змеевика 5, который служит для подачи хладагента 6.
Змеевик 5 навит с шагом t при внутреннем диаметре навивки ds, равном диаметру трубопровода откачки 3, и оребрен двуслойной (замкнутой у вершины) сеткой 7 с диаметром оребрения df.
Оребрение осуществлено таким образом, что слои 8, 9 и 10, 11 сетки 7 прикреплены у основания с тепловым контактом к парам соседних витков 12, 13 и 13, 14, соответственно, змеевика 5 с образованием ограниченной сеткой 7 винтовой полости 15 с шагом, равным шагу t навивки змеевика 5.
Образуемая сеткой 7 винтовая полость 15 открыта на трубопровод откачки 3.
На корпус 1 насоса установлен нагреватель 16, служащий для регенерации адсорбента.
Пространство внутри корпуса 1, ограниченное системой охлаждения 4, заполнено адсорбентом 2, при этом адсорбент 2 образует между удерживающими его сетками (например, 9 и 10) плоский винтовой слой толщиной D Для достижения максимальной скорости откачки толщина слоя D должна быть выбрана по возможности малой при этом минимальны перепады давления откачиваемого газа и температуры адсорбента внутри слоя и на его поверхности, с которой происходят подача газа и отвод на его теплоты адсорбции. Естественным ограничением величины D является размер гранул адсорбента. Так, при выборе D менее 2 характерных размеров гранул адсорбента засыпка слоя может оказаться неполной, что приведет к увеличению мертвого объема сорбционной емкости насоса. Выбранный нами верхний предел D (5 характерных размеров гранул) гарантирует эффективную засыпку слоя; превышение этого предела приведет к увеличению перепадов давления газа и температуры адсорбента в пределах одного слоя, что понизит удельную скорость откачки и скорость откачки насоса в целом.
Аналогичным образом, для эффективной работы адсорбента, находящегося вблизи внутренней стенки корпуса 1 насоса, диаметр оребрения df змеевика 5 двуслойной сеткой 7 выбран из условия:
db-Δ ≤ df ≤ db.
В этом случае максимальное расстояние от любой гранулы адсорбента 2 до канала подачи откачиваемого газа )и до системы охлаждения 4) не будет превышать Δ/2
Канал для подвода откачиваемого газа (внутренний объем винтовой полости 15) составлен внутренней полостью змеевика 5 и плоским винтовым зазором δ обеспечиваемым двуслойной сеткой 7 (например, между сетками 8 и 9, 10 и 11, и т.д.). В целях сокращения мертвого объема насоса (и, соответственно, увеличения его сорбционной емкости) ширина зазора d выбрана на минимальном уровне, обеспечивающем допустимое гидравлическое сопротивление потоку газа, проходящего через зазор к адсорбенту 2. Для вязкостного режима газа, реализующегося в большинстве рефрижераторов криосорбционной откачки рабочего тела, ширина зазора d должна быть выбрана вблизи верхнего предела заданного для d соотношения:
Figure 00000003

при этом полное гидравлическое сопротивление зазора не превысит гидравлического сопротивления центрального канала змеевика 5. В случае, когда насос предназначается для получения высокого вакуума (молекулярный режим течения), пропускная способность зазора будет в основном определяться площадью его входного сечения. При этом δ выбирается на нижнем пределе указанного диапазона:
Figure 00000004

Адсорбционный насос работает следующим образом.
После подсоединения насоса к откачиваемому объекту (на чертеже не показан) через трубопровод откачки 3 и подачи хладагента 6 в змеевик 5 происходит процесс захолаживания адсорбента 2 через сетку 7 оребрения, вызывающий понижение температуры и давления в полости насоса. Под действием перепада давления откачиваемый газ поступает из откачиваемого объекта по трубопроводу откачки 3 в винтовую полость 15 насоса, распределяется по щелевым зазорам между сетками 7 оребрения по всему объему насоса и проходит через сетки 7 в рабочий объем, заполненный адсорбентом 2, где происходит его поглощение (адсорбция) адсорбентом. Выделяющаяся в адсорбенте теплота адсорбции отводится от адсорбента системой охлаждения 4 к хладагенту 6 и уносится его потоком.
Действие насоса приводит либо к непрерывному понижению давления и достижению глубокого вакуума в откачиваемом объекте, либо (в случае криосорбционной откачки рабочего тела в рефрижераторных системах) к установлению постоянного потока газа из откачиваемого объекта, скорость и давление которого зависят от конкретных характеристик рефрижераторной системы и ее рабочего тела, гидравлического сопротивления откачных коммуникаций и конструктивных параметров насоса.
Время работы насоса в указанном режиме непрерывной откачки газа ограничивается его полной адсорбционной емкостью (по данному газу) и скоростью откачки.
В случае насыщения адсорбента проводят регенерацию насоса с помощью нагревателя 16, удаляя десорбирующийся из адсорбента газ. Цикл откачки может повторяться многократно.
Для полного представления сущности изобретения предлагаем к рассмотрению пример конкретного выполнения предлагаемого адсорбционного насоса.
Рассчитываемый насос имеет диаметр корпуса db 49 мм и длину L 105 мм (габариты определены общей компоновкой откачной системы) и предназначен для откачки паров рабочего тела в рефрижераторе испарения 3He с холодопроизводительностью 2 мВт на температурном уровне 0,4 К. В соответствии с заданными характеристиками, диаметр трубопровода откачки, находящегося при температуре 4,2 К, должен составлять 14 мм: ds 14 мм.
В качестве адсорбента используется активированный уголь СКТ-4 в гранулах диаметром 1,5 мм (длиной 3 5 мм). Толщина слоя адсорбента Δ выбирается равной 3 диаметрам гранул, т.е. D4,5 мм.
Змеевик системы охлаждения адсорбента наматывается на стержне диаметром 14 мм из медной трубки исходным диаметром 4 мм, деформирующейся при навивке в овал высотой 4,5 мм вдоль оси навивки. Толщина медной сетки оребрения выбирается равной 0,5 мм для обеспечения необходимой жесткости винтовой полости. Внешний диаметр оребрения df выбирается в пределах, заданных соотношением
db D ≤df≤db: df= 45 мм.
Наконец, ширина зазора d между слоями адсорбента определится из соотношения:
Figure 00000005
где шаг винтовой спирали t равен сумме Δ, δ и удвоенной толщины сетки оребрения. Это даст d 1,5 мм и t 7 мм.
Адсорбционный насос с приведенными параметрами был изготовлен и испытан в рефрижераторе испарения 3He. Скорость откачки насоса оказалась близка к рассчетной. Полная масса адсорбента в насос составили в данной конструкции 60 г, что соответствует адсорбционной емкости по 3He равной 3 г. Такое количество адсорбента обеспечивает работу рефрижератора в указанном выше режиме в течение 3 часов без регенерации насоса.
Основными преимуществами предлагаемой конструкции, улучшающими эксплуатационные характеристики адсорбционного насоса, являются:
равномерное двустороннее охлаждение адсорбента в каждом слое;
легкий доступ газа к адсорбенту за счет наличия зазоров с обеих сторон каждого слоя адсорбента и малой толщины D этого слоя;
увеличение сорбционной емкости насоса за счет эффективного использования его объема;
простота и технологичность конструкции;
простота сборки насоса и смены адсорбента.

Claims (1)

  1. Адсорбционный насос, содержащий цилиндрический корпус с расположенным в нем между корпусом и сеткой адсорбентом, трубопровод откачки и систему охлаждения адсорбента, отличающийся тем, что система охлаждения адсорбента выполнена из теплопроводного материала в виде размещенного внутри корпуса змеевика, соосного корпусу и оребренного двуслойной сеткой таким образом, что слои сетки прикреплены к двум соседним виткам змеевика с образованием ограниченной сеткой винтовой полости для прохода откачиваемого газа с шагом, равным шагу змеевика, и толщиной слоя адсорбента между соседними сетками оребрения в пределах 2 5 характерных размеров гранул адсорбента, при этом диаметр оребрения змеевика df и зазор δ между слоями адсорбента выбраны из следующих соотношений:
    dв-Δ ≤ df≤ dв;
    Figure 00000006

    где dв внутренний диаметр корпуса, м;
    df диаметр оребрения, м;
    Δ - толщина слоя адсорбента между соседними сетками оребрения, м;
    δ - зазор между слоями адсорбента, м;
    ds-внутренний диаметр навивки змеевика, м;
    t = Δ + δ - шаг навивки змеевика, м;
    L длина корпуса насоса, м.
RU95105611A 1995-04-05 1995-04-05 Адсорбционный насос RU2101564C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95105611A RU2101564C1 (ru) 1995-04-05 1995-04-05 Адсорбционный насос

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95105611A RU2101564C1 (ru) 1995-04-05 1995-04-05 Адсорбционный насос

Publications (2)

Publication Number Publication Date
RU95105611A RU95105611A (ru) 1997-01-10
RU2101564C1 true RU2101564C1 (ru) 1998-01-10

Family

ID=20166657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95105611A RU2101564C1 (ru) 1995-04-05 1995-04-05 Адсорбционный насос

Country Status (1)

Country Link
RU (1) RU2101564C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В.А.Майданов и др. Рефрижератор растворения непрерывного действия с адсорбционной откачкой. Адсорбционные насосы. Ж. "Физика низких температур", 1994, 20, N 7, с. 674. *

Also Published As

Publication number Publication date
RU95105611A (ru) 1997-01-10

Similar Documents

Publication Publication Date Title
US20200054961A1 (en) Systems and methods for cryogenic refrigeration
US2615686A (en) Heat transfer device
CN1144988C (zh) 高效致冷系统
US20140326001A1 (en) Systems and methods for cryogenic refrigeration
US5823003A (en) Process for heat recovery in a sorption refrigeration system
JPH04263791A (ja) 熱交換器
CN103486777A (zh) 一种回热式低温制冷机用变孔隙率回热器
EP0165848A1 (fr) Procédé de production de chaleur et/ou de froid au moyen d'une machine à compression fonctionnant avec un fluide mixte de travail
CN105659039B (zh) 换热器和使用该换热器的制冷循环装置
CN1322300C (zh) 热交换器
RU2101564C1 (ru) Адсорбционный насос
EP3049736B1 (en) Systems and methods for cryogenic refrigeration
CN116638431A (zh) 一种用于磨粒流抛光的低温制冷循环装置及其工作方法
Barrak Heat pipes heat exchanger for HVAC applications
CN2711644Y (zh) 高效紧凑的管翅式吸附床
CN109059329A (zh) 一种插片阻热回热器及带有该回热器的低温制冷机
CN1242500A (zh) 冰箱的防结露装置
WO1996035079A1 (en) Low mass hydride heat pump
CN210267826U (zh) 一种冷媒分配循环系统
CN117537642B (zh) 热管、散热器及电子设备
CN111561830B (zh) 一种带翅片的小通道并行管路换热器及计算方法
JPH0468558B2 (ru)
SU1028879A1 (ru) Вакуумный сорбционный насос непрерывного действи
SU1733687A1 (ru) Адсорбционный насос
RU2382278C1 (ru) Регенеративный теплообменник нижней ступени криогенной газовой машины