RU2099283C1 - Покрытие на основе алмазоподобного материала и способ его получения - Google Patents

Покрытие на основе алмазоподобного материала и способ его получения Download PDF

Info

Publication number
RU2099283C1
RU2099283C1 RU96110601/25A RU96110601A RU2099283C1 RU 2099283 C1 RU2099283 C1 RU 2099283C1 RU 96110601/25 A RU96110601/25 A RU 96110601/25A RU 96110601 A RU96110601 A RU 96110601A RU 2099283 C1 RU2099283 C1 RU 2099283C1
Authority
RU
Russia
Prior art keywords
diamond
carbon
substrate
coating
plasma
Prior art date
Application number
RU96110601/25A
Other languages
English (en)
Other versions
RU96110601A (ru
Original Assignee
Закрытое акционерное общество "Техно-ТМ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Техно-ТМ" filed Critical Закрытое акционерное общество "Техно-ТМ"
Priority to RU96110601/25A priority Critical patent/RU2099283C1/ru
Priority to EP97926309A priority patent/EP0949200A1/en
Priority to PCT/RU1997/000172 priority patent/WO1997046484A1/ru
Application granted granted Critical
Publication of RU2099283C1 publication Critical patent/RU2099283C1/ru
Publication of RU96110601A publication Critical patent/RU96110601A/ru

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Использование: получение материалов для микро- и оптоэлектроники. Сущность изобретения: в СВЧ-установку с ЭЦР-разрядом помещают подложку, откачивают до 2•10-3 Па, подают дихлорметан или другой галогенсодержащий углеводород. Зажигают СВЧ-разряд. Перемещают подложку из зоны ЭЦР. Покрытие на основе алмазоподобного материала с аморфной структурой характеризуется следующими показателями: пики в спектре комбинационного рассеяния 1317 см-1 и 1570 см-1 с соотношением интенсивностей, соответствующим наличию не менее 45% SP3 - гибридизированного углерода, характерного для алмазной фазы, плотность не менее 2900 кг/м3, отсутствие пропускания в видимой области спектра и прозрачность в диапазоне длин волн 2-25 мкм. 2 с. и 1 з.п.ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к углеродным алмазоподобным покрытиям и способам их получения из высокоразреженной плазмы сверхвысокочастотного (СВЧ) разряда в режиме электронно-циклотронного резонанса (ЭЦР). Оно может быть использовано в различных отраслях микроэлектроники и оптоэлектроники.
Алмазоподобные пленки (АПП), во многих случаях содержащие включения алмазной фазы, находят в настоящее время практическое применение благодаря своим, в первую очередь, механическим свойствам и оптическим характеристикам: твердости, износостойкости, низкому коэффициенту трения по отношению к большинству конструкционных материалов, высокой теплопроводности, малому поглощению в видимой области спектра и высокому коэффициенту преломления. В различных вариантах практического применения АПП последние выступают либо в качестве среды для реализации необходимых элементов структур и устройств микро- и оптоэлектроники, либо как покрытия различного назначения: защитные, теплоотводящие, декоративные и т. п. Применение алмазоподобных пленок в микроэлектронике и оптоэлектронике накладывает особые требования к их электрофизическим свойствам и оптико-электрическим параметрам: электронной эмиссии, оптическим свойствам, люминесценции, электропроводности, ширине запрещенной зоны. Решающее значение для формирования структур на основе алмазоподобных пленок имеет степень их конформности (обеспечивающей точное повторение микрорельефа подложки) и возможность управления основными рабочими параметрами материала без использования других материалов (легирования, металлизации и т. д.) и сложных технологических операций (таких, как ионная имплантация, молекулярно-лучевая эпитаксия, вакуумное напыление и т.п.). Не менее важной областью применения АПП является их использование в качестве защитных покрытий оптических устройств, работающих в различных диапазонах электромагнитного излучения, что предполагает специфические требования к оптическим свойствам материала в рабочей области спектра, в частности, например, в инфракрасном (ИК) диапазоне.
Известны многочисленные типы АПП различного качества и состава [1-3] отличающиеся между собой по физическим свойствам в широких пределах, в зависимости от используемого варианта осаждения углерода на твердую подложку. Характерными особенностями этих пленок являются: плотность от 1500 до 2800 кг/м3, отсутствие в материале покрытия выраженной кристаллической структуры (структуры дальнего порядка), слабая фото- и катодолюминесценция, а также некомформность, приводящая к соглаживанию микрорельефа поверхности подложки.
Наиболее близким к предлагаемому является покрытие на основе алмазоподобного материала с аморфной структурой, содержащего включения алмазной фазы и не более 20 ат. водорода, полученное методом газофазного плазмохимического осаждения из СВЧ-разряда в режиме ЭЦР [4] К недостаткам данного покрытия следует отнести то, что при относительной прозрачности материала покрытия в видимой области спектра поглощение в ИК-диапазоне весьма значительно и-за наличия примеси водорода.
Свойства и качество получаемых пленок в решающей степени определяются условиями их получения, поэтому вопрос выбора способа получения углеродного покрытия является неотъемлемым компонентом решения проблемы создания покрытия с заданными физическими свойствами.
Известны способы осаждения АПП из плазмы электрического разряда различного типа, в том числе и из плазмы СВЧ-разряда в режиме ЭЦР [5-7] Для этих способов характерны расположение подложки в активной зоне разряда (зоне ЭЦР), подача электрического смещения на подложку и рабочее давление от 1 до 2000 Па, а также высокая температура подложки (от 300 до 700oC), что существенно ограничивает круг материалов, используемых в качестве основы для нанесения покрытий. Эти ограничения связаны в первую очередь с термической нестабильностью многих материалов в указанном диапазоне температур, а также с прямым воздействием неравновесной плазмы активной зоны разряда на поверхность подложки и формируемое покрытие.
Наиболее близким к предлагаемому способу получения покрытия является метод осаждения алмазоподобного углерода из плазмы СВЧ-разряда в режиме ЭЦР [8] при котором подложка выносится из зоны воздействия активной плазмы. Это снимает самый существенный недостаток большинства способов получения АПП, но при этом требуется дополнительная энергия, подаваемая в виде высокочастотного напряжения на подложку. Плазма создается в области выполнения условия электронно-циклотронного резонанса за счет взаимодействия СВЧ-излучения с молекулами исходного плазмообразующего газа водорода, падаваемого непосредственно в активную зону (зону ЭЦР). Углеродсодержащий компонент подается в зону предварительно сформированного при прохождении через зону ЭЦР потока атомов, ионов и электронов. За счет вторичных процессов диссоциации и ионизации углеродсодержащие молекулы распадаются и ионизируются. Поток активных частиц за счет этого обогащается углеродом, который и образует АПП при осаждении на подложку. Метод формирования потока плазмы по этому способу требует использования водорода, а в качестве углеродсодержащего компонента исходной газовой смеси применяются газообразные углеводороды: метан, пропан, ацетилен, в результате чего углеродный материал покрытия оказывается существенно гидрогенизированным (до 20% водорода). В данном случае вдород выступает не в качестве примеси к углероду, а напротив, основное вещество материала покрытия представляет собой химическое соединение углерода с водородом переменного состава.
Изложенное дает основание сделать вывод о том, что известные АПП не вполне удовлетворяют предъявляемым микроэлектроникой и оптоэлектроникой требованиям, а известные способы осаждения не позволяют получать при низкой температуре покрытия на основе алмазоподобного материала, не содержащего водорода.
Изобретение решает задачу создания такого покрытия на основе алмазоподобного материала с аморфной структурой, которое, обладая характерными для АПП высокими твердостью и плотностью, прозрачно в ИК-диапазоне и не пропускает видимого света.
Это достигается тем, что предлагается покрытие на основе алмазоподобного материала с аморфной структурой, содержащего включения алмазной фазы, в которой алмазоподобный материал представляет собой чистый углерод, т.е. индивидуальное простое вещество. Предлагаемое покрытие обладает высокой твердостью и плостностью, практически непрозрачно для света видимого диапазона, а в ИК-диапазоне не обнаруживает значительного поглощения в области длин волн от 2 до 25 мкм.
Другим объектом изобретения является способ получения покрытия на основе алмазоподобного материала, включающий плазмохимическое осаждение углерода на подложку из потока углеродсодержащих активных частиц (радикалов, атомов, ионов), создаваемого из исходных углеродсодержащих реагентов с помощью СВЧ-разряда в режиме электронно-циклотронного резонанса. При этом подложку выносят из зоны воздействия активной плазмы, а осаждение ведут, используя в качестве исходного реагента пары чистых углеводородов, молекулы которых содержат атомы химических элементов с высокой электроотрицательностью (кислорода, хлора и т.п.).
Сущность изобретения заключается в следующем.
Способ включает нанесение углеродной пленки из плазмы СВЧ-разряда в режиме ЭЦР за счет плазменного разложения паров углеводородов, содержащих углерод, водород и электроотрицательные компоненты, при давлениях в рабочей камере, не превышающих 1 Па, на подложку, расположенную вне зоны ЭЦР, при плотностях потока СВЧ-мощности от 2 до 50 кВт/м2 (в традиционно используемых единицах от 0,2 до 5 Вт/см2). Режим ЭЦР достигается в плазме СВЧ-излучения частотой 2,45 ГГц в тех точках, где магнитная индукция составляет 875 Гс, частота циркуляции электрона вокруг направления магнитного пля совпадает с частотой СВЧ-излучения, вследствие чего электроны начинают разгоняться до сверхтермических энергий. Это и есть условия возникновения электронно-циклотронного резонанса. Требуемая конфигурация магнитного поля создается путем помещения СВЧ-волновода (он же является плазмотроном) внутрь специально рассчитанного соленоида. Положение зоны, для которой выполняется условие возникновения ЭЦР, определяется параметрами соленоида и контролируется непосредственными измерениями магнитной индукции при наладке технологической камеры. Для эффективного инициирования СВЧ-разряда необходимо, чтобы зона ЭЦР совпадала с пучностью стоячей электромагнитной волны. Размещение подложки в зоне ЭЦР изменяет условия горения разряда. Кроме того, в зоне ЭЦР возникает область активной плазмы с высокоэнергетичной электронной компонентой, взаимодействие которой с поверхностью подложки существенно снижает скорость роста углеродной пленки и резко изменяет ее свойства. Поэтому подложку выносят из зоны ЭЦР.
Подобное пространственное разделение зоны плазмообразования (возбуждения, разложения и ионизации газа) и области формирования покрытия устраняет прямое воздействие высокоэнергетичной электронной компоненты на поверхность подложки и формируемого покрытия и защищает подложку от интенсивного электромагнитного излучения (за счет экранирования подложки зоной разряда). Увеличение расстояния подложки от зоны ЭЦР приводит к выравниванию радиальных градиентов потока к моменту взаимодействия активных частиц с ее поверхностью и снижению температуры подложки в процессе нанесения пленки. При этом, однако, скорость роста пленки уменьшается вследствие релаксации активных частиц как на стенках реактора, так и при взаимных соударениях до достижения поверхности подложки. Присутствие в исходных реагентах компонентов, содержащих атомы активных неметаллов (химических элементов с высокой электроотрицательностью), приводит к резкому падению концентрации свободных электронов, что способствует осаждению качественной конформной углеродной пленки. Расстояние от зоны ЭЦР, на котором должна быть размещена подложка для получения заданного режима осаждения углерода, зависит от линейной скорости потока активных частиц и кинетики релаксационных процессов. Определение этого расстояния в общем случае требует решения сложной кинетической задачи с учетом процессов диффузии реагентов в радиальном направлении, рекомбинации активных частиц в объеме и принудительного массопереноса в направленном потоке активных частиц от зоны ЭЦР к подложке. Важно, однако, что спад скорости роста пленки сопровождается повышение равномерности ее осаждения и ростом конформности. Прямые опыты показали, что при использовании низких давлений (0,01-1 Па) расстояние подложки от зоны ЭЦР может достигать десятков сантиметров, тем не менее пленка растет с заметной скоростью.
Описанный способ создания потока активных частиц позволяет использовать в качестве исходного реагента пары различных углеводородов. С тем, чтобы избежать гидрогенизации материала углеродного покрытия, необходимо присутствие в плазме атомов химических элементов с высокой электроотрицательностью, способных эффективно химически связывать водород. Для решения поставленной задачи нами применены различные хлорированные углеводороды. Установлено, что при использовании (химическая формула CH2Cl2) удается получить алмазоподобный углеродный материал, не содержащий водорода.
Полученные описанным способом покрытия исследованы методами рамановской спектроскопии и инфракрасной спектроскопии с использованием метода Фурье (Фурье-ИК-спектроскопии).
На фиг.1 представлен спектр комбинационного рассеяния (рамановский спектр) покрытия, полученного по описанной технологии при давлении 0,3 Па из плазмы паров дихлорметана. В спектре наблюдается характерная для АПП полоса при 1570 см-1, но проявляется и пик при 1317 см-1. Известно, для чистого алмаза характерен пик рамановского рассеяния при 1332 см-1, ориентированный графит (G-графит) дает полосу при 1380 см-1. Приведенные данные качественно доказывают наличие sp3-гибридизованного углерода (характерного для алмазной фазы) в полученном материале углеродного покрытия. Оценивать соотношение количеств "алмазного и неалмазного углерода" по рамановским спектрам АПП из соотношения пиков при 1317 и 1570 см-1, как это зачастую делается в литературе, не вполне корректно в силу физических причин дискуссионного характера, которые здесь подробно обсуждать не представляется возможным. Соотношение, которое получается из данных фиг.1, показывает, что процент sp3-гибридизованного углерода в материале покрытия составляет не менее 45% Однако, этот процент не является однозначным показателем концентрации алмазной фазы: точное ее значение этим способом определить невозможно.
Состав получаемого углеродного покрытия контролировался методом Фурье-ИК-спектроскопии. Соответствующие спектры приведены на фиг.2. Представлен участок спектра, в котором располагаются полосы поглощения основных функциональных групп, содержащихся в материале углеродного покрытия. Данные показывают, что в получаемых из дихлорметана покрытиях, в отличие от типичных АПП, отсутствуют функциональные группы CH2, CO и OH, что приводит к отсутствию заметного поглощения в диапазоне от 2 до 25 мкм, традиционно используемому для детектирования ИК-излучения. Пропускание в видимой области практически отсутствует, поэтому получаемое покрытие можно условно назвать черным. Гравиметрические измерения показали, что плотность алмазоподобного материала получаемого покрытия составляет около 2900 кг/м3 (графит имеет плотность 2150 кг/м3, алмаз 3300 кг/м3). Измерения твердости углеродных покрытий осложнены тем, что они имеют недостаточно хорошую адгезию к большинству конструкционных материалов. Нам удалось, используя специальные методы улучшения адгезии, не являющиеся предметом описываемого изобретения, получить данные по прочностным характеристикам нанесенных покрытий при механическом нагружении. Метод позволяет оценить нижнюю границу величины твердости материала покрытий, определяемую механической прочностью подложки. Полученные для покрытий на твердосплавных материалах данные свидетельствуют о том, что твердость покрытия, получаемого описываемым способом из СВЧ-разряда в режиме ЭЦР на основе алмазоподобного материала, превышает 25 ГПа.
Экспериментальная проверка изобретения проводилась путем нанесения алмазоподобного углеродного покрытия на кремниевую подложку с использованием СВЧ-плазмохимической установки с ЭЦР-разрядом [8]
Подложка закреплялась на подвижном подложкодержателе, обеспечивающем осевое перемещение подложки в пределах технологического объема установки. Установка герметизировалась и откачивалась до давления 2•10-3 Па. В систему подавался рабочий газ пары дихлорметана с таким расходом, чтобы обеспечивалось давление 0,3 Па при постоянной скорости откачки. Этим создавались условия для организации направленного потока частиц через зону ЭЦР к подложке и далее к системе откачки. Затем зажигали СВЧ-разряд. Перемещением подложкодержателя устанавливали подложку на выбранном расстоянии. Достигнутая при варьировании условий эксперимента на расстоянии подложки от зоны ЭЦР 65 мм скорость роста пленки составляет в общепринятых единицах 6 мкм/ч (против 1-2 мкм/ч для известных способов-аналогов).
Полученное покрытие на основе алмазоподобного материала подвергнуто химическому анализу. Метод Фурье-ИК-спектроскопии показал, что материал покрытия практически не содержит ни водорода, ни кислорода, представляя собой химически индивидуальное простое вещество: чистый углерод. Пленка прозрачна в ИК-диапазоне электромагнитного излучения от 2 до 25 мкм, и полосы поглощения, характерные для примесей водорода и кислорода, отсутствуют (фиг.2).
Источники информации
1. V. Dusek and J.Musil. Mucrowave Plasmas in Surface Treatment Technologies, Czech. J.Phys. 1990, N 11, p. 1193.
2. M. Yoshikawa, N. Nagai, G. Katagiri, H. Ishida and A. Ishitani. Raman Spectra of Diamondlike Amorphous Carbon Films. Proc. Jap. New Diamond Forum, Kobe, Japan, 1988, P3-20.
3. B. Meyerson, F.W.Smith. Electrical and Optical properties of Hydrogenated Amorphous Carbon Films, J. Non-Cryst. Sol. 1980, N 35/36, p.435.
4. Патент США N 4935303, кл. B 32 B 9/00; B 05 D 3/06, 1990 прототип.
5. H. Kawarada et al. Large Area Chemical Vapor Deposition of Diamond Particles and Films Using Magneto-Microwave plasma, Jap. Journ. of Appl. Phys. 1987, V. 26, N 6, p.1032.
6. Заявка Японии N 4-329879, кл. C 23 C 16/26, C 01 B 31/06, C 23 C 16/50, H 01 L 21/205, Pat. Abstr. of Jap. 1993, V. 17, N 1990.
7. V. Dusek et al. Influence of Electron Cyclotron Resonance Microwave Plasma on Growth and Properties of Diamond-like Carbon Films Depositend onto r.f.biased Substrates, Diamond and Relat. Mater. 1993, N 2, p.397.
8. Патент США N 5427827, кл. B 05 D 3/06; C 23 C 16/26, 1995 прототип.

Claims (3)

1. Покрытие на основе алмазоподобного материала с аморфной структурой, содержащего включения алмазной фазы, отличающееся тем, что оно характеризуется пиками 1317 см-1 и 1570 см-1 в спектре комбинационного рассеяния с соотношением интенсивностей, соответствующим наличию не менее 45% sp3-гибридизированного углерода, характерного для алмазной фазы, плотностью не менее 2900 кг/м3, а также отсутствием пропускания в видимой области спектра и прозрачностью в диапазоне длин волн 2 25 мкм.
2. Способ получения покрытия на основе алмазоподобного материала, включающий плазмохимическое осаждение углерода из потока углеродсодержащих активных частиц, формируемого в плазме СВЧ-разряда в режиме электронно-циклотронного резонанса из исходного углеродсодержащего реагента, на подложку, вынесенную из активной зоны плазмы, отличающийся тем, что в качестве исходного реагента используют пары галогенсодержащих углеводородов.
3. Способ по п.2, отличающийся тем, что в качестве исходного реагента для осаждения используют пары дихлорметана.
RU96110601/25A 1996-06-05 1996-06-05 Покрытие на основе алмазоподобного материала и способ его получения RU2099283C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU96110601/25A RU2099283C1 (ru) 1996-06-05 1996-06-05 Покрытие на основе алмазоподобного материала и способ его получения
EP97926309A EP0949200A1 (en) 1996-06-05 1997-06-05 Method for forming conformal diamond-type carbon coatings, hard diamond-type carbon coating and porous filtration element using the same
PCT/RU1997/000172 WO1997046484A1 (fr) 1996-06-05 1997-06-05 Procede de production de revetements conformes a base de carbone et de type diamant, revetement dur a base de carbone et de type diamant, et materiau de filtration poreux faisant appel a ces revetements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96110601/25A RU2099283C1 (ru) 1996-06-05 1996-06-05 Покрытие на основе алмазоподобного материала и способ его получения

Publications (2)

Publication Number Publication Date
RU2099283C1 true RU2099283C1 (ru) 1997-12-20
RU96110601A RU96110601A (ru) 1998-04-10

Family

ID=20181110

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96110601/25A RU2099283C1 (ru) 1996-06-05 1996-06-05 Покрытие на основе алмазоподобного материала и способ его получения

Country Status (1)

Country Link
RU (1) RU2099283C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029325A1 (en) * 2002-09-30 2004-04-08 Institute Of Applied Physics Ras High velocity method for deposing diamond films from a gaseous phase in shf discharge plasma and a plasma reactor for carrying out said method
RU2324764C2 (ru) * 2003-07-14 2008-05-20 Карнеги Инститьюшн Оф Вашингтон Отжиг монокристаллических алмазов, полученных химическим осаждением из газовой фазы

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200951292A (en) * 2008-05-28 2009-12-16 Twister Bv Ice-phobic coating and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. US, патент, 4935303, кл. B 32 B 9/00, 1990. 2. US, патент, 5427827, кл. B 05 D 3/06, 1995. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029325A1 (en) * 2002-09-30 2004-04-08 Institute Of Applied Physics Ras High velocity method for deposing diamond films from a gaseous phase in shf discharge plasma and a plasma reactor for carrying out said method
CN100523288C (zh) * 2002-09-30 2009-08-05 范应用物理研究院 在微波放电等离子体中从气相沉积金刚石薄膜的高速方法和实施所述方法的装置
US7694651B2 (en) 2002-09-30 2010-04-13 Institute Of Applied Physics Ras High velocity method for deposing diamond films from a gaseous phase in SHF discharge plasma and device for carrying out said method
US8091506B2 (en) 2002-09-30 2012-01-10 Institute Of Applied Physics Ras High velocity method for depositing diamond films from a gaseous phase in SHF discharge plasma and a plasma reactor for carrying out said method
RU2324764C2 (ru) * 2003-07-14 2008-05-20 Карнеги Инститьюшн Оф Вашингтон Отжиг монокристаллических алмазов, полученных химическим осаждением из газовой фазы

Similar Documents

Publication Publication Date Title
Küppers The hydrogen surface chemistry of carbon as a plasma facing material
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
EP0254560B1 (en) Gaseous phase synthesized diamond and method for synthesizing same
US5620512A (en) Diamond film growth from fullerene precursors
CA2018886A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
EP0650465A1 (en) Conversion of fullerenes to diamond
Gielen et al. Plasma beam deposited amorphous hydrogenated carbon: Improved film quality at higher growth rate
Rodil et al. Nitrogen incorporation into tetrahedral hydrogenated amorphous carbon
RU2099283C1 (ru) Покрытие на основе алмазоподобного материала и способ его получения
EP0949200A1 (en) Method for forming conformal diamond-type carbon coatings, hard diamond-type carbon coating and porous filtration element using the same
US5201986A (en) Diamond synthesizing method
Koidl et al. Amorphous, hydrogenated carbon films and related materials: plasma deposition and film properties
Kimura et al. Effects of adding hydrocarbon gas to a high-power impulse magnetron sputtering system on the properties of diamond-like carbon films
Vlcek et al. Pulsed plasmas study of linear antennas microwave CVD system for nanocrystalline diamond film growth
Bardos et al. Differences between microwave and RF activation of nitrogen for the PECVD process
JPS60127293A (ja) ダイヤモンドの製造方法
Li et al. Optical and mass spectroscopic properties of microwave CH4/H2/Ar plasma for diamond deposition in a resonance cavity
Durand-Drouhin et al. Growth and bonding structure of hard hydrogenated amorphous carbon thin films deposited from an electron cyclotron resonance plasma
EP0327051B1 (en) Diamond and its preparation by chemical vapor deposition method
Zarrabian et al. Mass spectrometric investigations on plasmas obtained from a dual electron cyclotron resonance-radio frequency discharge
Miller et al. Hollow-cathode chemical vapor deposition of thick, low-stress diamond-like carbon films
RU2099282C1 (ru) Способ получения конформного алмазоподобного углеродного покрытия
Bourdon et al. Characterization of diamond-like films prepared by laser ablation of graphite
Rusli et al. Influence of process pressure on the growth of hydrocarbon films under direct dc bias in an electron cyclotron resonance plasma
Hovorka et al. Microwave plasma nitriding of a low-alloy steel

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040606