RU2098502C1 - Способ переработки свинецсодержащих пылей - Google Patents

Способ переработки свинецсодержащих пылей Download PDF

Info

Publication number
RU2098502C1
RU2098502C1 RU95111901A RU95111901A RU2098502C1 RU 2098502 C1 RU2098502 C1 RU 2098502C1 RU 95111901 A RU95111901 A RU 95111901A RU 95111901 A RU95111901 A RU 95111901A RU 2098502 C1 RU2098502 C1 RU 2098502C1
Authority
RU
Russia
Prior art keywords
lead
solution
dust
carried out
zinc
Prior art date
Application number
RU95111901A
Other languages
English (en)
Other versions
RU95111901A (ru
Original Assignee
Товарищество с ограниченной ответственностью "Электрохимические технологии металлов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Товарищество с ограниченной ответственностью "Электрохимические технологии металлов" filed Critical Товарищество с ограниченной ответственностью "Электрохимические технологии металлов"
Priority to RU95111901A priority Critical patent/RU2098502C1/ru
Publication of RU95111901A publication Critical patent/RU95111901A/ru
Application granted granted Critical
Publication of RU2098502C1 publication Critical patent/RU2098502C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Использование: цветная металлургия, изобретение может быть использовано при переработке отходов, содержащих свинец и другие цветные металлы. Сущность: способ переработки свинецсодержащих пылей включает предварительную обработку их раствором с pH 6,0-7,0, после которой осуществляют сернокислотное выщелачивание, карбонизацию и термообработку при 200-600oC, при этом получают соединения свинца, которые подвергают восстановлению при 700-800oC. 3 з.п. ф-лы.

Description

Изобретение относится к области цветной металлургии и может быть использовано при переработке отходов, содержащих свинец и другие цветные металлы, с целью их разделения и выделения в индивидуальном виде.
Известен способ переработки аккумуляторного лома и свинцовой пыли в присутствии карбоната натрия и углесодержащего восстановителя при следующем соотношении компонентов, вес. г: аккумуляторный лом 100; свинцово-сурмянистые окислы 525; сода 5,5-26; кварцевый песок 3-10; углесодержащий восстановитель 5,5-9 [1]
Существенным недостатком известного способа является высокая температура процесса, в результате чего часть свинца в виде оксидов возгоняется, не успев восстановиться. Кроме того, все примеси, находящиеся в исходном материале, переходят в восстановительную форму и сильно загрязняют металлический свинец. Присутствие серы в восстанавливаемом продукте приводит к накоплению ее в расплаве в виде сульфата натрия (Tпл=890oC) и, в конечном счете, к загустеванию и замерзанию расплава. Таким образом, конечная задача - переработка свинецсодержащих отходов полностью не решается.
Ближайшим по технической сущности и достигаемому результату является способ переработки пылей свинцового производства восстановительной сульфат-натриевой плавкой [2]
При реализации предложенного способа отсутствует возможность создания экологически чистого процесса комплексной переработки свинецсодержащей пыли с извлечением сопутствующих компонентов.
Техническим результатом предложенного способа является обеспечение экологически чистого процесса с высокой избирательной способностью, получение товарного оксида цинка, товарного свинца и отходов, имеющих самостоятельное практическое применение.
При обработке свинецсодержащих пылей с pH=6,0-7,0 происходит избирательное извлечение цинка (90-96%). В дальнейшем его переводят в оксид цинка одним из известных методов. Фильтрат после отделения оксида направляют опять на выщелачивание цинка. Если процесс вести раствором с pH<6,0, то в жидкую фазу будут переходить медь, железо, мышьяк, если поддерживать pH>7,0, то значительно снижается извлечение цинка. Эти причины обуславливают и температурный рабочий интервал. При температуре ниже 10oC падает извлечение цинка, а при температуре выше 30oC в раствор переходит мышьяк и медь.
Осадок после выщелачивания обрабатывают раствором серной кислоты с концентрацией 50-200 г/л при температуре 25-90oC. В раствор переходят медь, железо, мышьяк и остатки цинка. Использовать растворы с концентрацией кислоты ниже 50 г/л невыгодно, так как для полного извлечения меди, железа и мышьяка потребуются большие объемы воды и получатся бедные по меди растворы. Их необходимо подвергать концентрированию любым из известных способов, например, выпариванию. Это удорожает процесс. При концентрации кислоты выше 200 г/л снижается извлечение меди и неэкономично расходуется серная кислота, которую в дальнейшем необходимо нейтрализовать. Нижняя граница температурного интервала (25oC) обусловлена оптимальными значениями извлечения меди и мышьяка, а верхняя граница упругость паров. При температурах выше 90oC необходимо другое, более сложное оборудование, например, автоклавы. Это усложняет и удорожает процесс. При этих режимах в раствор также переходят в виде сульфатов алюминий и магний. После отделения осадка, который на 95-99% состоит из сульфата свинца, фильтрат может быть обработан щелочью и осадок гидроокисей и арсенатов брикетируется и направляется на участок пирометаллургической обработки основного производства. Более целесообразно подвергать этот фильтрат электролизу с целью извлечения меди в виде готового продукта с чистотой 96-98%
Мышьяк выводится из технологического цикла связыванием его железом (III). Для этого раствор нейтрализуют до pH 7,5-8 и продувают через него килород или просто выдерживают на воздухе для перевода Fe (II) в Fe (III). Так как содержание железа в растворе больше концентрации мышьяка в этом же растворе, это позволяет без дополнительных затрат связать и осадить весь мышьяк.
Осадок сульфата свинца обрабатывают раствором карбоната натрия с концентрацией 180-220 г/л. Эти условия соответствуют максимальной скорости карбонизации и минимальным водным потокам. Раствор после конверсии регенерируют карбонатом кальция и вновь направляют на стадию карбонизации.
Карбонат свинца подвергают термообработке при 200-600oC. Эта операция проводится с целью исключить выброс расплава солей из рабочего пространства печи при загрузке карбоната свинца. Выбор температурного интервала обусловлен тем, что не происходит полного разложения карбоната.
Карбонат свинца загружается в расплав карбонатов натрия и калия и туда же подается один из известных углеродсодержащих восстановителей (природный газ, кокс, древесные опилки, уголь и т.д.). Процесс ведут при температуре 700-800oC. Нижний предел температурного интервала обусловлен эвтектической точкой плавления карбонатов натрия и калия. Ниже 680oC расплав застынет, а для того, чтобы удобно было работать, его необходимо перегреть на 20oC. Выше 800oC процесс вести экономически невыгодно из-за больших энергетических затрат, высокой упругости паров самого расплава и перерабатываемых отходов, а также разложения самой солевой ванны. Карбонаты калия и натрия выше 800oC неустойчивы. Расплав меняет свой состав и одновременно теряет все преимущества, присущие этой ванне.
Преимущества изобретения:
1. Разделение и извлечение практически всех ценных компонентов, содержащихся в пылевых отходах:
а) получение товарного оксида цинка, извлечение 90-96%
б) получение товарного свинца, чистотой 98-99,5%
в) получение меди чистотой 96-98% медного купороса или оксида меди.
2. В результате процесса образуются отходы, имеющие самостоятельное практическое применение: гипс и сульфат натрия.
3. Солевая ванна может работать без замены в течении 6 месяцев и более.
4. Процесс является экологически чистым с высокой избирательной способностью.
Пример 1. В стеклянный стакан поместили 200 г пыли, залили раствор с pH= 7 (дистиллированная вода) и перемешивали в течение 3-х часов. Отфильтровали. Из фильтрата известным способом получили 54,5 гр ZnO, что соответствует 94% от общего содержания цинка в пыли. Твердый осадок обработали раствором H2SO4 (100 г/л), при t=60oC, Т:Ж=1:3 и перемешивали в течении 3 ч. Отфильтровали. Твердый осадок подвергли карбонизации раствором Na2CO3 (200 г/л) при t=25oC, в течении 30 мин. Отфильтровали. Твердый осадок содержал 45 г PbCO3, что соответствует 92%-ному извлечению свинца из пыли. Карбонат свинца подвергли термообработке при T=200oC в течение 2 ч и восстановили в 20 г смеси карбонатов натрия и калия в присутствии графита. Температура процесса 750oC. Получили 34 г Pb.
Пример 2. В стеклянной посуде обработали 2 кг пыли, последовательно партиями по 200 г, раствором pH=6,5, t=12oC, перемешивание в течение 3-х ч. Из фильтратов получили 0,56 кг ZnO (96% от общего содержания цинка в пыли). Фильтраты после осаждения цинка направляли на обработку следующей партии пыли. Твердый осадок после выщелачивания цинка обработали раствором H2SO4 (150 г/л) при T=20oC, перемешивание в течение 3-х ч. Из фильтратов, после их нейтрализации до pH=7,5-8,0, получили смесь гидроокисей, арсенатов и арсенитов общим весом 139 г, содержащей в Cu - 24,6; Fe 14,4; Zn 13,0; As 27,1. Твердый осадок после сульфатизации подвергли конверсии раствором Na2CO3 (200 г/л), при T= 20oC, перемешивание 0,5 ч. После фильтрации твердый осадок подвергли термообработке при T= 400oC в течение 30 мин и восстановлению в карбонатах натрия и калия при T=780oC в присутствии древесного угля. В результате получили 310 г металлического свинца.
Пример 3. В железную бочку поместили 75 кг пыли, залили раствор pH=7 (водопроводная вода) и перемешивали в течении трех часов при t=15oC. Отстаивание 2 ч. Жидкую фазу деконтировали в другую железную емкость. Из деконтата получили 24,3 кг гидроокиси цинка (92% от исходного содержания цинка в пыли). Твердый осадок обработали раствором H2SO4 (60 г/л) при t=20oC, перемешивали 3 ч. Отстаивали. Деконтат на нейтрализацию, а твердый осадок обработали раствором Na2CO3 (180 г/л) при T:Ж 1:3 в течение 30 мин. Отфильтровали. Твердый осадок содержал 17,5 кг PbCO3 (91% от исходного содержания свинца в пыли). 10 кг карбоната свинца подвергли термообработке при T=450oC в течение 30 мин. Получили смесь PbCO3 и PbO в количестве 9,1 кг. В алундовом тигле наплавили 0,6 кг Na2CO3; 0,4 K2CO3 и 1 кг смеси PbCO3 и PbO. Установили температуру 720oC и через алундовую трубочку подавали в расплав CH4. Через каждые 20 мин производили догрузку смеси PbCO3 в количестве одного килограмма. В течение трех часов переработали 9 кг карбонатно-оксидной смеси свинца. Слили 7,6 кг металлического свинца.
Пример 4. В металлическую емкость с электрической мешалкой загрузили 60 кг пыли, залили оборотную воду с pH=6,0, t=25oC. Перемешивали 3 ч. Фильтрация. Из фильтрата получили 25 кг ZnCO3 (извлечение 95%). Твердый осадок обработали раствором H2SO4 (120 г/л) при t=25oC. Перемешивали 3 ч. Фильтрация. Фильтрат на нейтрализацию, а твердый осадок обработали раствором Na2CO3 (220 г/л). Твердый осадок содержал 13,7 кг PbCO3 (извлечение 93%). Провели термообработку при 200oC в течение 3-х ч. В стакане из нержавеющей стали наплавили 0,55 кг Na2CO3, 0,45кг K2CO3 и 1 кг PbCO3. При температуре 700oC в расплав подавали природный газ. Через каждый 20 мин проводили загрузку 1 кг PbCO3. Переработали 12 кг карбоната свинца. Слили 9,2 кг металлического свинца.

Claims (4)

1. Способ переработки свинецсодержащих пылей, включающий восстановление соединений свинца в расплаве, отличающийся тем, что свинецсодержащие пыли предварительно обрабатывают раствором с pН 6,0 7,0, затем проводят сернокислотное выщелачивание с последующей карбонизацией и термообработкой при 200 600oС с получением соединений свинца, а восстановление осуществляют при 700 800oС.
2. Способ по п. 1, отличающийся тем, что сернокислотное выщелачивание проводят раствором с концентрацией кислоты 50 200 г/л при температуре 25 - 90oС.
3. Способ по п. 1, отличающийся тем, что карбонизацию проводят раствором карбоната натрия с концентрацией 180 220 г/л.
4. Способ по п. 1, отличающийся тем, что перед восстановлением в расплав загружают карбонатные соединения свинца.
RU95111901A 1995-07-11 1995-07-11 Способ переработки свинецсодержащих пылей RU2098502C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95111901A RU2098502C1 (ru) 1995-07-11 1995-07-11 Способ переработки свинецсодержащих пылей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95111901A RU2098502C1 (ru) 1995-07-11 1995-07-11 Способ переработки свинецсодержащих пылей

Publications (2)

Publication Number Publication Date
RU95111901A RU95111901A (ru) 1997-06-27
RU2098502C1 true RU2098502C1 (ru) 1997-12-10

Family

ID=20169978

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95111901A RU2098502C1 (ru) 1995-07-11 1995-07-11 Способ переработки свинецсодержащих пылей

Country Status (1)

Country Link
RU (1) RU2098502C1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVA20070007A1 (it) * 2007-01-17 2008-07-18 Millbrook Lead Recycling Techn Recupero del piombo sottoforma di carbonato ad altissima purezza da pastello di recupero dalla frantumazione di accumulatori al piombo esausti

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. SU, авторское свидетельство N 505723, кл. С 22 В 7/00, 1976. 2. SU, авторское свидетельство N 465106, кл. С 22 В 7/02, 1982. *

Also Published As

Publication number Publication date
RU95111901A (ru) 1997-06-27

Similar Documents

Publication Publication Date Title
KR102508038B1 (ko) 리튬 회수 방법
US5453111A (en) Method for separation of metals from waste stream
CN112359213A (zh) 一种铜冶炼危险废物协同处置及有价金属综合回收的方法
KR20200065503A (ko) 리튬이온 전지 양극재 스크랩으로부터 유가금속 회수 방법
CN108624759B (zh) 一种从白烟尘中综合回收有价金属的方法
CN105734299A (zh) 一种氧压处理锡阳极泥综合回收有价金属的方法
CN112063854B (zh) 一种以贵铅为原料综合回收铋、银、铜金属的方法
US20100167077A1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
CN106834707A (zh) 一种含砷物料综合回收及砷资源化利用的方法
US3929597A (en) Production of lead and silver from their sulfides
US5290338A (en) Antimony separation process
AU3628195A (en) Method for recovering metal and chemical values
US3961941A (en) Method of producing metallic lead and silver from their sulfides
US20110268632A1 (en) Hydrometallurgical method for the reuse of secondary zinc oxides rich in fluoride and chloride
CA2199268C (en) Method for recovering metal and chemical values
CN109136575B (zh) 一种湿法处理多金属粉尘的工艺方法
RU2098502C1 (ru) Способ переработки свинецсодержащих пылей
KR101763549B1 (ko) 출발 물질들로부터 비소를 분리하는 방법 및 장치
CA2278834A1 (en) Improved tellurium extraction from copper electrorefining slimes
EP0588235B1 (en) Process for recovering lead from lead-containing raw materials
KR100236663B1 (ko) 금속 및 화학적 유용물 회수방법
US4488950A (en) Heavy metal separation from copper-bearing wastes
WO2023157826A1 (ja) 亜鉛回収方法
JPS6134495B2 (ru)
RU2786016C1 (ru) Усовершенствованный способ получения высокочистого свинца