RU2096861C1 - Времяпролетный масс-анализатор ионов - Google Patents

Времяпролетный масс-анализатор ионов Download PDF

Info

Publication number
RU2096861C1
RU2096861C1 RU94014619A RU94014619A RU2096861C1 RU 2096861 C1 RU2096861 C1 RU 2096861C1 RU 94014619 A RU94014619 A RU 94014619A RU 94014619 A RU94014619 A RU 94014619A RU 2096861 C1 RU2096861 C1 RU 2096861C1
Authority
RU
Russia
Prior art keywords
laser radiation
reflector
target
analyzer
mass analyzer
Prior art date
Application number
RU94014619A
Other languages
English (en)
Other versions
RU94014619A (ru
Inventor
Георгий Георгиевич Манагадзе
Нина Георгиевна Манагадзе
Original Assignee
Георгий Георгиевич Манагадзе
Нина Георгиевна Манагадзе
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Георгий Георгиевич Манагадзе, Нина Георгиевна Манагадзе filed Critical Георгий Георгиевич Манагадзе
Priority to RU94014619A priority Critical patent/RU2096861C1/ru
Publication of RU94014619A publication Critical patent/RU94014619A/ru
Application granted granted Critical
Publication of RU2096861C1 publication Critical patent/RU2096861C1/ru

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Назначение: масс-спектрометрия, экспресс-анализ состава различных сплавов, анализ химического состава полупроводников. Обеспечивает повышение точности, чувствительности и массового разрешения масс-анализаторов. Сущность изобретения: в линейном времяпролетном масс-анализаторе ионов, содержащем соосно и последовательно расположенные мишень, детектор с центральным отверстием и с сеточной сборкой, рефлектор, фокусирующий объектив и источник лазерного излучения, по ходу следования лазерного излучения расположен формирующий пучки оптический элемент. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области научного приборостроения и более точно касается времяпролетного масс-анализатора.
Известен времяпролетный масс-анализатор, содержащий источник ионов, включающий мишень из исследуемого вещества и источник лазерного излучения, а также расположенные соосно с мишенью пространство дрейфа ионов, рефлектор и детектор с центральным отверстием (SU N1097252).
В масс-спектрометре этого типа лазерное излучение плотностью мощности ≈108 109 Вт/см падает под углом ≈30 - 40o на исследуемый образец, вызывая испарение и ионизацию пробы. Образованные ионы разлетаются не- симметрично относительно вертикали к плоскости мишени. Эта асимметрия связана, во-первых, с особенностью кратера, образованного при косом падении излучения на поверхность (т.н. эффект "зарывания" луча), и, во-вторых, с эффектом вылета небольшой части ионов вдоль лазерного луча. Направление разлета ионов в источнике этого типа сильно зависит от заглубления луча в поверхность и угла падения.
Воспроизводимость спектров, полученных от источников ионов этого типа, крайне низка. Низкая воспроизводимость спектров существенно удлиняет время анализа в целом, требует специального отбора спектров, продолжительной статистической обработки для получения усредненных по объему образца химического состава матрицы и примесей.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому масс-анализатору является времяпролетный масс-спектрометр, содержащий расположенные соосно: мишень, детектор, рефлектор, фокусирующий объектив и лазерный источник ионов (SU N 1732396]
В этом устройстве лазерное излучение падает перпендикулярно на мишень, а ионы регистрируются детектором, также симметрично расположенным относительно мишени. Такая конфигурация источника ионов создала возможность обеспечения полного симметричного разлета и регистрации ионов. Это, в свою очередь, позволило достичь относительно высокой воспроизводимости спектров и проведения послойного анализа без смещения образца или луча практически без ограничения.
Предложенный полностью симметричный масс-спектрометр дал возможность существенно сократить общее количество спектров, необходимых для получения правильного объемного анализа химического состава образца. Однако для выполнения последнего требуется регистрация от 10 до 100 спектров и их усреднение. Необходимость усреднения связана с малым диаметром пятна лазерного излучения, который при оптимальных физических характеристиках равен ≈50 мкм. Эта величина недостаточна для обеспечения правильного анализа при незначительной неоднородности пробы. Поэтому возникает необходимость проведения анализа в разных точках и в различных слоях образца и усреднения данных.
Имеется возможность увеличения диаметра пятна простым увеличением диаметра лазерного воздействия, например, до 300 500 мкм, однако в этом случае возрастает и плотность плазмы, возникающей при лазерном воздействии при одновременном росте средней энергии ионов.
Эти два фактора приводят к ухудшению массового разрешения масс-анализатора за счет объемного заряда плотной плазмы, снижению его чувствительности за счет роста средней энергии ионов до 0,5 1 кэВ и их большего энергетического разброса.
Целью изобретения является повышение достоверности результатов в одном акте лазерного воздействия за счет получения информации со многих точек поверхности образца, повышение чувствительности и массового разрешения масс-анализатора в целом за счет улучшения геометрии ионного источника и увеличения отношения сигнала к шуму на порядок величины.
Цель достигается тем, что в линейном времяпролетном масс-анализаторе ионов, содержащем соосно расположенные элементы конструкции в последовательности: мишень, плоский электрод, детектор с центральным отверстием и с сеточной сборкой, пространство дрейфа, рефлектор, фокусирующий объектив и источник лазерного излучения, по ходу следования лазерного излучения между рефлектором и фокусирующим объективом располагают формирующие пучки оптический элемент. При этом диаметр каждого из них на плоскости мишени d много меньше по сравнению с расстоянием между ними D при минимальном размере области воздействия на мишень.
На чертеже представлена схема предлагаемого масс-анализатора.
Между мишенью 1 и детектором 3 с сеточной сборкой 4 на расстоянии 5 см от мишени расположен плоский электрод 2. Отверстия в плоском электроде составляют ≈1,0 1,5 см. За бесполевым пространством 5 расположен рефлектор 6, ограниченный входной сеткой 7 и донной сеткой 8.
За рефлектором расположен оптический элемент, формирующий пучок 9, фокусирующий объектив 10 и источник лазерного излучения 11.
Оптический элемент, формирующий пучок 9, в простейшем случае представляет собой многосекторную круговую сборку, каждый из секторов которой представляет клин. Это обеспечивает получение многолучевого пучка лазерного излучения. Например, при шести секторах без центрального отверстия в плоскости мишени образуются шесть пучков диаметром 40 50 мкм и расстоянием между соседними пучками от 300 до 500 мкм.
На прибор падают следующие напряжения: при анализе ионов с энергией 150
200 эВ на плоский электрод 2 подают напряжение положительной полярности от 2 до 6 В. Средняя сетка сеточной сборки находится под положительным потенциалом 80 100 В. Крайние сетки и сетка рефлектора 7 находятся под нулевым потенциалом, а сетка 8 под положительным потенциалом ≈160 180 В.
Масс-анализатор, согласно изобретению, работает следующим образом: ионы и плазма, образованные на мишени под воздействием лазерного излучения, из каждой шести точек воздействия разлетаются изотропно. При взаимодействии с тормозящим полем плоского электрода 2 с низкотемпературным плазменным облаком высокой плотности происходит отделение ускоренных ионов от низкотемпературной плазмы, являющейся основным источником шума. Ионы, отраженные в поле рефлектора 6, пролетев через сеточную сборку 4, регистрируются детектором 3.
Возможны другие варианты расположения оптического элемента, формирующего излучение, например, между источником лазерного излучения и фокусирующим объективом или непосредственно перед мишенью. Сам многолучевой пучок также может быть сформирован не только системой клиньев. Для этих целей может быть использована голографическая маска, обеспечивающая расположение отдельных пучков по углам квадратов.
Воздействующий пучок может быть также сформирован в виде цилиндрического при выполнении условий, что разница между большим диаметром пучка R и малым r должна быть много меньше R.
Масс-анализатор может найти применение в металлургической промышленности для экспресс-анализа составов различных сплавов, в микроэлектронике и электронной промышленности для анализа химического состава полупроводников, в экологии для определения предельно допустимых концентраций веществ, загрязняющих окружающую среду и продукты питания, в биологии и медицине для химического анализа крови, почечных камней, лекарств, а также в других областях, где требуется проведение элементного и изотопного анализа различных материалов.

Claims (3)

1. Времяпролетный масс-анализатор ионов, содержащий соосно и последовательно расположенные лазерный источник излучения, фокусирующий объектив, рефлектор, детектор с центральным отверстием, мишень, отличающийся тем, что между рефлектором и фокусирующим объективом расположен формирующий пучки оптический элемент.
2. Масс-анализатор по п.1, отличающийся тем, что формирующий пучки оптический элемент расположен между источником лазерного излучения и фокусирующим объективом.
3. Масс-анализатор по п.1, отличающийся тем, что формирующий пучки оптический элемент расположен внутри рефлектора.
RU94014619A 1994-06-21 1994-06-21 Времяпролетный масс-анализатор ионов RU2096861C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94014619A RU2096861C1 (ru) 1994-06-21 1994-06-21 Времяпролетный масс-анализатор ионов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94014619A RU2096861C1 (ru) 1994-06-21 1994-06-21 Времяпролетный масс-анализатор ионов

Publications (2)

Publication Number Publication Date
RU94014619A RU94014619A (ru) 1996-02-10
RU2096861C1 true RU2096861C1 (ru) 1997-11-20

Family

ID=20154996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94014619A RU2096861C1 (ru) 1994-06-21 1994-06-21 Времяпролетный масс-анализатор ионов

Country Status (1)

Country Link
RU (1) RU2096861C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1095272, кл.H 01J 49/40, 1984. Авторское свидетельство СССР N 1732396, кл.H 01J 49/40, 1992. *

Similar Documents

Publication Publication Date Title
US5300774A (en) Time-of-flight mass spectrometer with an aperture enabling tradeoff of transmission efficiency and resolution
US5128543A (en) Particle analyzer apparatus and method
KR100776067B1 (ko) 분석 시스템과 대전 입자 빔 장치
US4236073A (en) Scanning ion microscope
JP2006511912A (ja) 複数の飛行経路を有する飛行時間型質量分析器
US6984821B1 (en) Mass spectrometer and methods of increasing dispersion between ion beams
US20230170205A1 (en) Apparatus and method for high-performance charged particle detection
JP2021027038A (ja) 分光およびイメージングシステム
EP0744617A2 (en) Apparatus and method for surface analysis
US5471059A (en) Multiple-detector system for detecting charged particles
US5220167A (en) Multiple ion multiplier detector for use in a mass spectrometer
AU2017220662B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
US3986025A (en) Ion microanalyzer
US4800273A (en) Secondary ion mass spectrometer
RU2096861C1 (ru) Времяпролетный масс-анализатор ионов
US7427752B2 (en) Mass spectrometer
JP2022545651A (ja) 焦点面検出器
US4320295A (en) Panoramic ion detector
Miltenberger Secondary ion emission in MeV-SIMS
KR20020088559A (ko) 이차이온 질량분석기
EP0295253A1 (en) ELECTRONIC SPECTROMETER.
AU2017220663B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
JPS61227355A (ja) 質量分析計用粒子線源
JPH05290796A (ja) 表面分析装置
JPS60189150A (ja) 質量分析計のイオン源