RU2094628C1 - Поршневой двигатель внутреннего сгорания - Google Patents

Поршневой двигатель внутреннего сгорания Download PDF

Info

Publication number
RU2094628C1
RU2094628C1 SU883192804A SU3192804A RU2094628C1 RU 2094628 C1 RU2094628 C1 RU 2094628C1 SU 883192804 A SU883192804 A SU 883192804A SU 3192804 A SU3192804 A SU 3192804A RU 2094628 C1 RU2094628 C1 RU 2094628C1
Authority
RU
Russia
Prior art keywords
rotor
working
cylinders
stator
cylinder
Prior art date
Application number
SU883192804A
Other languages
English (en)
Inventor
Василий Александрович Деревянко
Виталий Михайлович Комир
Виктор Григорьевич Назаренко
Original Assignee
Кременчугский филиал Харьковского государственного политехнического университета
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кременчугский филиал Харьковского государственного политехнического университета filed Critical Кременчугский филиал Харьковского государственного политехнического университета
Priority to SU883192804A priority Critical patent/RU2094628C1/ru
Application granted granted Critical
Publication of RU2094628C1 publication Critical patent/RU2094628C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Использование: энергетика, двигателестроение. Сущность изобретения: двигатель содержит одну или несколько рабочих секций, каждая из которых имеет статор 3 с торцовыми крышками, ротор 4, два цилиндра 1 и 2. В цилиндрах 1 и 2 установлены поршни 9 и 10 с образованием рабочих полостей. Поршни 1 и 2 связаны с коленчатым валом 13. Каждая секция имеет камеры 5 и 6 сгорания, сообщенные с рабочими полостями. Камеры 5 и 6 сгорания образованы вращающимся синхронно с коленчатым валом 13 ротором 4. Торцовые крышки выполнены с двумя зеркально расположенными отверстиями, ротор 4 - с возможностью образования в статоре дополнительных полостей, посредством которых камеры отделены одна от другой, один из цилиндров выполнен рабочим и имеет объем, превышающий объем второго цилиндра в 2,5 - 4,0 раза для бензиновых двигателей и в 2,0 - 5,0 раз для дизельных двигателей. 1 з. п. ф-лы, 3 ил.

Description

Изобретение относится к области двигателестроения.
Известны двигатели внутреннего сгорания с внешним и внутренним смесеобразованием, состоящие из группы неподвижных деталей, являющихся базой для всех остальных механизмов и систем, в том числе и движущихся, включая поршневую группу. Поршневая группа воспринимает давление газов в цилиндрах, преобразуя его в крутящий момент на коленчатом валу двигателя (1. Двигатели внутреннего сгорания. Изд. 4-е, переработанное и дополненное /Под ред. А. С. Орлина и М. Г. Круглова. М. Машиностроение, 1983; 2. Тракторные дизели. Справочник под общей редакцией Б. А. Взорова. М.Машиностроение, 1981).
В известных конструкциях двигателей внутреннего сгорания камера сгорания обычно образована внутренней поверхностью головки цилиндра и днищем поршня. В двигателях внутреннего сгорания (ДВС) используют также различные конструкции разделенных камер сгорания, обеспечивающих более совершенное смесеобразование.
Наиболее близким к изобретению является ДВС, содержащий один или несколько рабочих цилиндров (секций) с разделенной камерой сгорания (см. выше ссылки 1 и 2).
Недостатками указанного двигателя являются:
а) высокое остаточное давление продуктов сгорания к моменту выпуска газов, что приводит к значительным энергетическим потерям и обуславливает необходимость установки глушителя для снижения шума;
б) открытие выпускного клапана до того, как поршень достигнет нижней мертвой точки, что вызывает дополнительные потери энергии;
в) сложная система газораспределения.
Цель изобретения повышение КПД поршневых ДВС и упрощение конструкции двигателя.
Эта цель достигается тем, что:
двигатель снабжен несколькими (например, двумя) камерами сгорания, поворачивающимися в статоре синхронно с вращением коленвала;
камеры сгорания образованы лопатками ротора и чередуются с открытыми с торцов полостями, через которые происходит всасывание воздуха (горючей смеси) и выпуск отработанных газов;
процессы всасывания и сжатия происходят в одном цилиндре, а рабочий ход и выпуск в другом, объем которого превышает объем первого в 2,5 4,0 раза для бензиновых двигателей и в 2, 5,0 раз для дизелей, обеспечивая повышение КПД и снижение уровня шума до санитарных норм без глушителя;
процесс газораспределения осуществляется путем периодического перекрытия лопатками вращающегося ротора каналов, соединяющих цилиндры со статором.
Рабочая секция двигателя состоит из двух цилиндров разного диаметра и нескольких (например, двух) камер сгорания, перемещающихся в статоре синхронно с вращением коленвала. При этом ось статора может быть, как перпендикулярна (поперечное расположение), так и параллельна (продольное расположение) оси двигателя.
На фиг. 1 изображена рабочая секция ДВС с поперечным расположением статора, продольный разрез; на фиг. 2 продольный разрез статора.
Рабочая секция ДВС содержит цилиндры 1 и 2, статор 3, внутри которого соосно размещен ротор 4. Лопатки ротора образуют камеры сгорания 5 и 6, которые чередуются с полостями 7 и 8. В цилиндрах 1 и 2 размещены поршни 9 и 10, которые с помощью шатунов 11 и 12 соединены с коленвалом 13. Поршни 9 и 10 имеют уплотнительные кольца, обеспечивающие герметичную изоляцию надпоршневого объема. Цилиндры 1 и 2 соединены со статором 3 каналами 14 и 15.
Статор 3 представляет собой цилиндрическую полость, закрытую с торцов крышками 16 и 17. В корпусе статора закреплены одна или несколько (например, две) форсунок 18 и 19 для впрыскивания топлива в камеру сгорания. (В двигателе с внешним смесеобразованием закреплены одна или несколько свечей зажигания для воспламенения горючей смеси).
Кроме того, в корпусе статора 3 имеются окно 20, через которое подводится сжатый воздух для продувки камер сгорания, и окно 21, соединенное патрубком с выхлопной трубой ( не показаны). Окна 20 и 21 расположены на различных образующих цилиндра статора 3 таким образом, чтобы при вращении ротора 4 его лопатки раньше перекрывали окно 21 и затем окно 20. В крышке 17 статора 3 имеются окна 22 и 23. Окно 22 соединено с воздухозаборником (не показан), а окно 23 с выхлопной трубой.
Камеры сгорания 5 и 6 представляют собой сегментный (или секторный) цилиндр закрытый с торцов. Герметичность камер сгорания обеспечивается за счет уплотнительных элементов, размещенных в лопатках ротора 4 и прилегающих к стенкам статора 3 по образующей цилиндра. Кроме того, уплотнительные элементы размещают по периметру торцевой стенки камеры и в торцах лопаток ротора 4.
Полости 7 и 8 представляют собой сегментный (секторный) цилиндр открытый с торцов. Ротор 4 кинематически жестко связан с коленвалом 13 двигателя таким образом, чтобы при повороте коленвала на 180o ротор поворачивался на 180/К (К количество камер сгорания в статоре).
Двигатель работает следующим образом.
В качестве исходного рассмотрим положение, когда поршни 9 и 10 в цилиндрах 1 и 2 находятся в верхней мертвой точке (н.м.т.). В этот момент ротор 4 должен занимать положение, при котором торцы его лопаток закрывают выходы каналов 14 и 15 в статоре 3. При движении поршня вниз в цилиндре 1 создается разрежение. Одновременно с перемещением поршня 9 ротор 4 поворачивается против хода часовой стрелки (на фиг. 1 направление вращения ротора 4 указано стрелкой) и его лопатки открывают канал 14, который соединяется с полостью 7. Через окно 22 в крышке 17, полость 7 и канал 14 воздух поступает в цилиндр 1. Процесс всасывания воздуха (горячей смеси в двигателе с внешним смесеобразованием) в цилиндр 1 продолжается до тех пор пока поршень 9 не достигнет нижней мертвой точки (НМТ). В этот момент концы лопаток ротора 4 вновь перекрывают каналы 14 и 15. С началом движения поршня 9 вверх воздух (горючая смесь) в цилиндре 1 сжимается. Одновременно с этим открывается канал 14, по которому сжатый воздух вытесняется в камеру сгорания 6. Процесс сжатия заканчивается при достижении поршнем 9 ВМТ. Степень сжатия воздуха (горячей смеси) определяется соотношением рабочего объема камеры сгорания 5 (или) и объема цилиндра 1.
Поршень 10 в цилиндре 2 достигает ВМТ одновременно с поршнем 9. В этот момент лопатки ротора 4 перекрывают каналы 14 и 15, и происходит впрыскивание топлива в камеру сгорания через форсунки 18 и 19 (поджиг горячей смеси с помощью свечей зажигания в двигателе с внешним смесеобразованием)
При дальнейшем повороте ротора 4 открываются каналы 14 и 15. По каналу 15 продукты сгорания устремляются в цилиндр 2 и обеспечивают рабочий ход поршня 10. Одновременно в цилиндре 1 повторяется процесс всасывания аналогично описанному выше.
Рабочий ход в цилиндре 2 продолжается до достижения поршнем 10 НМТ. В этом положении каналы 14 и 15 вновь перекрываются лопатками ротора 4. При движении поршня 10 вверх продукты сгорания через открывающийся канал 15 вытесняются из цилиндра 2 в полость 8, а из нее через окно 23 попадают в выхлопную трубу. Одновременно в цилиндре 1 повторяется процесс сжатия аналогично описанному ранее.
Для максимального использования энергии продуктов сгорания и повышения КПД двигателя соотношение рабочих объемов цилиндров 1 и 2 должно быть таким, чтобы к концу рабочего хода поршня 10 в НМТ давление в цилиндре 2 снижалось за счет расширения до атмосферного. Такое соотношение объемов цилиндров 1 и 2 является оптимальным и может быть определено из условия
P1V n 1 =P2V n 2 ,
откуда
Figure 00000002
,
где V1 и V2 рабочие объемы цилиндров 1 и 2;
P1 давление продуктов сгорания при расширении их до объема V1;
P2 давление при расширении продуктов сгорания до объема V2;
n показатель политропы расширения.
Для бензиновых двигателей:
n 1,22 1,28 P1 0,35 0,6 НПа
Для дизелей:
n 1,15 1,3 P2 0,25 0,6 НПа
(Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей /Под ред. А. С. Орлина, Н. Г. Круглова. М.Машиностроение, 1983, с. 157, табл.9).
При P2 0,1 НПа (атмосферное давление) пределы изменения V2/V1 в зависимости от показателя политропы и давления P1 составляют
а) для бензиновых двигателей:
V2/V1 2,5 4,0
б) для дизелей:
V2/V1 2,0 5,0.
Соотношение объемов V1 и V2 предопределяет требуемое соотношение диаметров цилиндров 1 и 2 при одинаковом рабочем ходе поршней 9 и 10.
Продувка камер сгорания 5 и 6, а также полостей 7 и 8 осуществляется сжатым воздухом, поступающим через окно 20. Остаточные газы удаляются через окно 21 при прохождении окон 20 и 21 соответствующей камерой сгорания или полостью.
Двигатель внутреннего сгорания компонуется из одной или нескольких рабочих секций, передающих крутящий момент на один коленвал. Для повышения плавности хода двигателя циклы в каждой секции смещены друг относительно друга на угол
Figure 00000003
(m число скомпонованных в двигателе рабочих секций).
Таким образом, установка на двигателе нескольких (например, двух) камер сгорания, разделенных между собой открытыми с торцов полостями и поворачивающихся в статоре синхронно с вращением коленвала, является существенным отличием от известных прототипов и позволяет:
выполнять сжатие воздуха (горючей смеси) в цилиндре 1, а рабочий ход в цилиндре 2, объем которого превышает объем первого в 2,5 4,0 раза для бензиновых двигателей и 2,0 5,0 раза для дизелей, чем достигается цель -повышение КПД ДВС и упрощение его конструкции, поскольку уровень шума снижается до санитарных норм без глушителя;
возможность отказаться от сложной системы газораспределения и осуществлять процесс газораспределения путем перекрытия лопатками вращающегося ротора 4 каналов 14 и 15, соединяющих цилиндры 1 и 2 со статором 3, чем достигается цель, а именно упрощение конструкции двигателя.

Claims (2)

1. Поршневой двигатель внутреннего сгорания, содержащий одну или несколько рабочих секций, каждая из которых имеет статор с торцевыми крышками и ротор, два цилиндра с установленными в них с образованием рабочих полостей поршнями, связанными с коленчатым валом, и одну или несколько сообщенных с рабочими полостями камер сгорания, образованных вращающимся синхронно с коленчатым валом ротором, отличающийся тем, что, с целью упрощения конструкции и повышения КПД, торцевые крышки выполнены с двумя зеркально расположенными отверстиями, а ротор с возможностью образования в статоре дополнительных полостей, сообщенных при помощи последних с окружающей средой и отделяющих рабочие камеры одну от другой.
2. Двигатель по п.1, отличающийся тем, что один из цилиндров выполнен рабочим и имеет объем, превышающий объем второго цилиндра в 2,5 4,0 раза для бензиновых двигателей и в 2 5 раз для дизельных двигателей.
SU883192804A 1988-02-23 1988-02-23 Поршневой двигатель внутреннего сгорания RU2094628C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU883192804A RU2094628C1 (ru) 1988-02-23 1988-02-23 Поршневой двигатель внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU883192804A RU2094628C1 (ru) 1988-02-23 1988-02-23 Поршневой двигатель внутреннего сгорания

Publications (1)

Publication Number Publication Date
RU2094628C1 true RU2094628C1 (ru) 1997-10-27

Family

ID=20928870

Family Applications (1)

Application Number Title Priority Date Filing Date
SU883192804A RU2094628C1 (ru) 1988-02-23 1988-02-23 Поршневой двигатель внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2094628C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Орлин А.С., Крутков М.Г. Двигатели внутреннего сгорания. 4-е издание. - М.: Машиностроение, 1983. *

Similar Documents

Publication Publication Date Title
GB2057052A (en) Internal Combustion Engine Cycles
US4071000A (en) Double crankshaft valved two cycle engine
EP0040549A1 (en) Engine
US4312308A (en) Compression relief system for internal combustion engine
US4513568A (en) Method for the transformation of thermal energy into mechanical energy by means of a combustion engine as well as this new engine
US7500462B2 (en) Internal combustion engine
US3692005A (en) Internal pressure engine
RO114660B1 (ro) Motor cu ardere interna, cu piston, cu dubla actiune
EP0119721B1 (en) Machine having integral piston and cylinder wall sections
RU2094628C1 (ru) Поршневой двигатель внутреннего сгорания
GB2050509A (en) Internal combustion engine and operating cycle therefor
CN108869019A (zh) 利用汉弗莱热力循环的旋转内燃机
RU2074967C1 (ru) Роторный двигатель кузнецова
US3874346A (en) Internal combustion engine
US1111605A (en) Internal-combustion engine.
US4036566A (en) Fluid displacement apparatus
US20030188701A1 (en) Internal combustion engine
RU182290U1 (ru) Роторный двигатель внутреннего сгорания
US4144865A (en) Fluid displacement apparatus
WO2011095879A1 (en) Two-stage engine exhaust system
RU2253029C2 (ru) Роторный двигатель внутреннего сгорания
SU1280152A1 (ru) Двигатель внутреннего сгорани
SU1231244A2 (ru) Двухтактный многоцилиндровый двигатель внутреннего сгорани
RU1834980C (ru) Роторно-поршневой двигатель внутреннего сгорани
RU2087732C1 (ru) Бесшатунный двухтактный двигатель внутреннего сгорания