RU2093900C1 - Устройство для имитации движения транспортного средства - Google Patents

Устройство для имитации движения транспортного средства Download PDF

Info

Publication number
RU2093900C1
RU2093900C1 RU9193055132A RU93055132A RU2093900C1 RU 2093900 C1 RU2093900 C1 RU 2093900C1 RU 9193055132 A RU9193055132 A RU 9193055132A RU 93055132 A RU93055132 A RU 93055132A RU 2093900 C1 RU2093900 C1 RU 2093900C1
Authority
RU
Russia
Prior art keywords
movable platform
dome
display surface
observer
eyes
Prior art date
Application number
RU9193055132A
Other languages
English (en)
Other versions
RU93055132A (ru
Inventor
Майкл Муррей Пол
Original Assignee
Хьюс Редифьюжн Симюлейшн Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хьюс Редифьюжн Симюлейшн Лимитед filed Critical Хьюс Редифьюжн Симюлейшн Лимитед
Publication of RU93055132A publication Critical patent/RU93055132A/ru
Application granted granted Critical
Publication of RU2093900C1 publication Critical patent/RU2093900C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/30Simulation of view from aircraft
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators
    • G09B9/14Motion systems for aircraft simulators controlled by fluid actuated piston or cylinder ram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/46Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer the aircraft being a helicopter

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Processing Or Creating Images (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Использование: в устройствах для имитации движения транспортного средства, преимущественно летательного аппарата, и для обучения, и в качестве развлечения. Сущность изобретения: дисплейная поверхность является сферической и имеет протяженность, достаточную для перекрывания всего (предназначенного) поля зрения, не считаясь с вращением (поворотами), что может относиться к первой подвижной платформе. Не необходимости в слежении дисплейного экрана за вращением (поворотами) вокруг позиции наблюдения на подвижной платформе, поддерживающей макет кабины летчика. Представленное изображение проходит по дисплейной поверхности, в то время как имеющееся вращение не оказывает влияния на восприятие реализма проецируемого изображения. Нет необходимости в размещении дисплейного экрана на больших расстояниях для слежения за вращением (поворотами) подвижной платформы кабины, а лучше просто поддерживать геометрический центр дисплейного экрана в заданном положении относительно глаз наблюдателя, очерченном в пределах макета кабины летчика. 3 з. п. ф-лы, 15 ил.

Description

Изобретение относится к устройствам для имитации движения транспортного средства, преимущественно летательного аппарата, и может быть применено для обучения и в качестве развлечения.
В типичных устройствах имитации полета летательного аппарата (самолета) пилот-стажер сидит в макете кабины летчика и рассматривает изображение, видимое ему через окна кабины. Часто макет кабины летчика установлен на подвижной платформе для того, чтобы можно было имитировать физические эффекты движения летательного аппарата и дополнить имитацию движения самолета (летательного аппарата) присутствием визуального изображения. Обычно макет кабины летчика опирается на устойчивую платформу, которая сама поддерживается шестью гидравлическими домкратами. Гидравлические домкраты связаны с тремя шарнирами на нижней стороне платформы и с тремя шарнирами на опорной станине под платформой. Таким образом, каждая платформа связана с двумя домкратами, которые, в свою очередь, соединены с соответствующей парой шарниров опорной станины. Эта известная система домкратов обеспечивает шесть степеней свободы и является промышленным стандартом для опорных систем подвижных платформ.
Для пользования в имитаторах летательных аппаратов предлагались различные визуальные системы. В основном, эти визуальные системы могут подразделяться на два типа это неколлимирующие и коллимирующие.
В неколлимирующих системах изображение, которое должен рассматривать пользователь устройства имитации, проецируется на экран или купол, размещенный перед макетом кабины летчика. Поверхность экрана обычно расположена в 3 6 м от глаз пользователя имитатора (тренажера), и поэтому такие системы не дают идеального изображения отдаленных объектов. Неколлимирующие системы, однако, часто используются, когда требуется очень широкое поле зрения, так как трудно проецировать изображение с очень широким полем зрения, используя коллимирующие системы. Неколлимирующие системы также иногда полезны при имитации вертикального взлета самолета, когда это необходимо для обучения и тренировки пилотов маневрированию на очень низких высотах. В таких условиях короткое расстояние между экраном и глазами пользователя не является основным недостатком.
В коллимирующих системах пользователь присутствует в изображении, которое кажется безграничным. В одном из типов широко используемой коллимирующей системы окна макета кабины летчика перекрыты с помощью приспособления телевизионного монитора, включающего расщепители луча, так что лучи света от телевизионного монитора отражались в частично отражающем зеркале к вогнутому зеркалу и от вогнутого зеркала обратно через частично отражающее зеркало в глаза пользователя. Такие приспособления передают соответствующие изображение только для одного положения пользователя и поэтому не идеальны для имитации многоместной кабины, как это требуется, например, для широкофюзеляжных реактивных самолетов. Они используются в этих случаях, однако отмечается факт, что только два пользователя, сидящих бок о бок, принимают соответствующее изображение через окна непосредственно перед ними и сбоку. Пользователь, смотрящий в сторону переднего или бокового окна на другой стороне кабины, либо видит очень искаженное изображение, либо вообще не видит его.
Известны коллимирующие широкоугольные визуальные системы, в которых исключены вышеупомянутые проблемы изображения поперек кабины. В таких системах изобретение проецируется на задний проекционный экран, расположенный над макетом кабины, и рассматривается через вогнутое зеркало, расположенное перед кабиной. Зеркало находится обычно в двух-трех метрах впереди кабины, но тем не менее дает изображение, которое кажется безграничным. Такими системами теперь являются большинство серийных систем имитации полета самолета (тренажерных), но они не являются идеальными для имитации военных самолетов, так как поле зрения в военных самолетах обычно во много раз больше, чем в гражданских самолетах.
Вышеупомянутые проблемы ограниченного поля зрения можно, конечно, преодолеть увеличение купола зеркала, представляющего поверхность, непосредственно видимую пользователем. Если макет кабины летчика стационарный, это довольно легко обеспечить, но если макет кабины смонтирован на подвижной системе, размеры и вес купола и зеркала становятся главной проблемой, так как они тоже должны быть установлены на подвижной системе для поддерживания необходимой геометрии визуальной системы.
Вышеупомянутая промышленная стандартная система с подвижной платформой обычно содержит платформу, смонтированную на шести гидравлических приводах или домкратах, каждый из которых имеет длину хода (размах) около 1,5 м.
Известно техническое решение (прототип), в котором для разрешения проблем, присущих визуальным системам с большим полем зрения (обзором) на подвижной платформе, предложено смонтировать макет кабины на первой подвижной платформе и дисплейный экран в виде купола на второй подвижной платформе. Это предложение было раскрыто в докладе "Satisfactory Visual and Motuin Cueing for Helicopters/ VSTOL Simulation", С.Секстона, О.Бачбиджа и и докт. М. Робертса из Rediffusion Simulation Society, May 1990. Этот доклад был представлен Королевскому Воздухоплавательному Обществу в мае 1990 г. В этом решении макет кабины летчика смонтирован на известной подвижной с шестью степенями свободы системе, опирающейся на наклонную поверхность, и купол смонтирован на идентичной второй известной подвижной системе, установленной на передней наклонной поверхности. Преимуществом такого размещения является, во-первых, то, что купол может простираться под макет кабины, так что возможно имитировать изображение, релевантное процедурам приземления вертолета, и, во-вторых, то, что механическая нагрузка на макет кабины подвижной системы уменьшена за счет переноса конструкции купола на вторую подвижную систему. В раскрытой конструкции купол, по существу, сферический и расположен так, что подвижная система, поддерживающая купол, должна вращаться вокруг глаз пользователя в макете кабины, в соответствии с движениями макета вокруг глаз пользователя, если нижний край полусферы остается вне поля зрения пользователя. Следовательно, относится небольшое вращение макета кабины вокруг глаз пользователя может вызвать необходимость такого вращения купола вокруг глаз поддерживающей его подвижной системой, чтобы края купола проходили значительное расстояние. Например, если расстояние от купола до глаз порядка 5 м при угле вращения 18o вокруг точки глаз, то необходимо расположить край полусферы более чем в 1 м. Ясно, что такое размещение не может быть осуществлено достаточно быстро при использовании стандартных узлов подвижных систем, обусловленных большими размерами блоков дисплейных систем. Следовательно, ходя описанная в вышеупомянутом докладе система предложена как теоретическое решение проблемы, связанной с обеспечением интегрированного большого поля зрения (обзора), визуальная и подвижная системы никогда не могут быть осуществлены.
В том же докладе предложено альтернативное теоретическое решение, включающее обеспечение вторичными широкоугольными коллимирующими дисплеями, установленными независимо от подвижной системы, обеспечение очень большим неподвижным куполом, простирающимся вокруг подвижной платформы, и установку макета кабины летчика внутри поддерживающей известную подвижную платформу системы так, что макет кабины летчика может наклоняться относительно этой подвижной платформы.
Задачей, положенной в основу настоящего изобретения, является устранение или смягчение вышеуказанных проблем.
На фиг. 1 дано схематическое изображение стационарной визуальной системы в соответствии с известными, пригодными для вертолетов или VSLOL-тренажерами (имитаторами); на фиг. 2 известная стационарная визуальная система для представления очень широкого поля зрения (обзора); на фиг. 3 известная, установленная на подвижной платформе визуальной системы, включающая задний проекционный экран, рассматриваемый через сферическое зеркало; на фиг. 4 - основные узлы подвижной системы, показанной на фиг. 3; на фиг. 5 размещение гидравлических приводов подвижной системы, показанной на фиг. 4; на фиг. 6 - известная система, в которой макет кабины установлен на одной подвижной платформе, а рассматриваемый купол установлен на второй подвижной платформе; на фиг. 7 первый вариант настоящего устройства; на фиг. 8 12 различные виды устройства по второму варианту настоящего изобретения; на фиг. 13 - третий вариант настоящего изобретения; на фиг. 14 четвертый вариант настоящего изобретения; на фиг. 15 блок-схема системы управления любым описанным вариантом изобретения.
На фиг. 1 изображен известный тренажер (имитатор) с фиксированным куполом 1, радиус которого может быть от 3 до 6 м и который расположен вокруг стационарного макета кабины 2 летчика. Проекторы, обычно от 3 до 5, расположены в корпусе 3 так, чтобы проецировать изображение информации на внутреннюю поверхность купола. Внутренняя поверхность купола, рассматриваемая пользователем, находящимся в макете кабины 2, за исключением площади купола, занятой проекторами, может иметь изображение, проецируемое на нее, и, следовательно, пилоту-стажеру может быть представлено широкое поле зрения (обзора). Макет кабины, однако, стационарный или самое большее подвержен вибрации, и соответственно пользователь не может принимать сигналы движения. В основном, это снижает реализм имитации.
Известное расположение (фиг. 2) в основном очень похоже на расположение по фиг. 1, за исключением того факта, что проекторы распределены вокруг наружной поверхности купола.
Изображено два проектора 4, смонтированных на куполе. Каждый проектор проецирует пучок света через очень маленькую апертуру (известную как pin hole булавочное отверстие) в куполе, и поэтому может быть получено все окружающее поле зрение. Такое расположение удобно для имитирования, например, самолета-истребителя, в котором пилот размещается под прозрачным фонарем кабины, дающим неограниченное поле зрение вверх и на 360o вокруг самолета. Однако пилот-стажер снова сидит в кабине 5, которая либо стационарна, либо самое большее подвержена вибрации.
Фиг. 3 иллюстрирует известную подвижную систему тренажера (имитатора), в которой подвижная платформа 6 расположена на ряде из трех пар гидравлических приводов 7. Тренажер (имитатор) содержит макет кабины 8 летчика, задний проекционный экран 9, расположенный над макетом кабины, сферическое зеркало 10 и ряд проекторов 11, которые создают изображение на экране 9. Такое расположение дает полностью коллимированное изображение, но поле зрения (обзор) в вертикальном направлении ограничен обычно порядка 40o. Теоретически поле зрения (обзор) может растянуто путем увеличения размера зеркала 10 и смещения и расширения заднего проекционного экрана 9, но полученная конструкция будет очень большой, что приведет к увеличению массы и инерции подвижной системы. Чем больше масса и инерция системы, тем не менее подвижной и быстрой становится подвижная система.
В соответствии с фиг. 4 т 5 описаны основные узлы стандартной с шестью степенями свободы подвижной системы обычного типа. Шесть приводов 12, 13, 14, 15, 16, 17 присоединены к трем осям 18, 19 и 20 вращения, которые надежно закреплены на опорной площадке 21. Верхние концы приводов присоединены к осям 22, 23 и 24 вращения, закрепленным на нижней стороне подвижной платформы 25. Центроид движения системы обычно будет расположен в точке, отмеченной крестом 26, находящейся ниже и позади положения пилота-стажера, которое обозначено позицией 27. Поступательные смещения (перемещения) (вертикальные, продольные или поперечные) и вращательные смещения (наклон, вращение и рыскание) определяются относительно центроида подвижной системы и оси через центроид. Поэтому тангаж (продольное движение) платформы вокруг центроида движения приведет к вертикальному и продольному перемещению (смещению) позиции наблюдения и вращательному перемещению позиции наблюдения.
В обычных системах вышеописанного типа в соответствии с фиг. 1 5 либо и позиция наблюдения, и визуальная система стационарны, либо и позиция наблюдения, и визуальная система двигаются вместе на одной и той же платформе.
Теоретически поле зрения (обзор), закрепленное на подвижной платформе визуальной системы, можно сделать настолько большим, насколько это необходимо, путем монтирования всех блоков визуальных систем на подвижной платформе. Например, в теории такое устройство, как показано на фиг. 2, может быть смонтировано на подвижной платформе. На практике масса и инерция такого устройства будут настолько велики, что нагрузка на приводы сделает невозможным быстрое перемещение подвижной массы. Соответственно, хотя теоретическая возможность закрепления такой системы, как показано на фиг. 2, на подвижной платформе и обсуждалась, она была отклонена как непрактичная.
Для устранения проблем механической нагрузки, связанных с крупными узлами визуальных систем, было предложено предусмотреть две подвижные платформы одну, поддерживающую макет кабины летчика, и вторую, поддерживающую такой крупный компонент визуальной системы, как купол.
Устройство такого типа показано на фиг. 6, из которой видно, что макет кабины 28 летчика закреплен на подвижной платформе 29, которая также поддерживает проекторы 30.
Купол 31 закреплен на второй подвижной платформе 32. Одна подвижная платформа закреплена на наклонной поверхности 33, и вторая на противостоящей наклонной поверхности 34. Это делает возможным протянуть купол под макет кабины и приспособить его для имитации вертолета.
Следует, однако, отметить, что купол 31 нисходящее от макета кабины 29 летчика поле зрения (обзор) ориентированное к подвижной платформе 29, как показано. Поэтому ясно, что купол 31 должен прослеживать все движения макета кабины 28 летчика и поступательные, и вращательные, для того, чтобы поддерживать купол так, чтобы он накрывал все предназначенное для пилота-стажера поле зрения. Например, вращение макета кабины 28 вокруг позиции наблюдения (точки глаз пилота-стажера в направлении продольно вниз (pitch down) не приводит к перемещению или смещению, но будет вводить нижний край купола 31 в поле зрения до тех пор, пока купол 31 сам вращается вокруг позиции наблюдения. Результат этого выражается в том, что купол 31 должен быть способен делать очень большие движения в соответствии с вращениями (поворотами) макета кабины вокруг позиции наблюдения (точки глаз) пилота-стажера. Поэтому хотя система на фиг. 6 снижает механическую нагрузку на первую подвижную платформу 29, перемещение купола 31 трудно обеспечить.
Кроме того, хотя закрепление двух подвижных платформ на противостоящих наклонных поверхностях теоретически возможно, трудно рассматривать практическую систему, обусловленную размерами и весом различных узлов. Нагрузки на пол, прилагаемые подвижной платформой, очень велики, и наклонные опоры типа показанных на фиг. 6 должны иметь массивную конструкцию.
На фиг. 7 показан первый вариант настоящего изобретения. Подвижная платформа 35 стандартного типа поддерживает макет кабины летчика (не показан), внутри которой сидит пилот-стажер, обозначенный позицией 36. Проекционные устройства (не показаны) закреплены на платформе 35 и проецируют изображение, рассматриваемое пилотом-стажером, на куполе 37, поддерживаемом второй подвижной платформой 38, закрепленной на гидравлических приводах 39. Гидравлические приводы 39 обычного типа.
Купол 37 установлен так, что для точного воспроизведения изображения центр купола должен быть совмещен с позицией наблюдения (точкой глаз) пилота-стажера. Платформа 38, однако, управляется так, что она всегда, по существу, горизонтальна, невзирая на позицию платформы 35. Посредством управления купол вынужден перемещаться так, что его центр всегда совпадает с предназначенной для пилота-стажера позицией наблюдения. Поэтому купол достаточно велик, чтобы его периметр всегда был за пределами поля зрения пилота-стажера, не взирая на вращения (повороты), которые могут быть приложены к платформе 35. Например, если платформа 35 наклоняется в нисходящем направлении так, что нет поступательного перемещения позиций наблюдения пилота, то купол 37 вообще не будет двигаться. Изображение, проецируемое проекторами, закрепленными на платформе 35, будет просто проходить по сферической поверхности, определяемой куполом 37, но не будет эффекта восприятия настолько, насколько это касается пилота-стажера.
Поэтому в случае варианта на фиг. 7 движения купола 37 относительно ограничены и легко управляются. Просто необходимо рассчитывать заданное положение позиции наблюдения и применить оригинальную серию управляющих входных сигналов для шести приводов 38, чтобы купол принял соответствующее положение. Подвижная система 35 не должна выдерживать нагрузку купола 37 и может, следовательно быстро двигаться.
Купол 37 не должен сам двигаться в ответ на вращения (повороты) вокруг глаз пилота и, в основном, относительно медленные перемещения купола 37 это все, что требуется.
В устройстве на фиг. 7 две подвижные системы расположены одна против другой. Это требует очень большого пространства. Кроме того, купол 37 должен поддерживаться так, чтобы простираться на значительное расстояние от одной стороны поддерживающей его платформы, делая необходимым установку конструктивной опорной системы, как, например опорного кольца 40, на объемную раму 41, как схематически показано на чертеже.
Более удовлетворительное устройство, которое также может обеспечить широкое поле зрения, показано на фиг. 8.
На фиг. 8 12 изображен второй вариант изобретения. В этом втором варианте обычная первая подвижная платформа 42, поддерживающая пилота-стажера, обозначенного позицией 43, установлена на обычном устройстве из 6 гидравлических приводов 44. Расположенный вокруг первой подвижной платформы купол 45 установлен на кольце 46, поддерживаемом тремя парами гидравлических приводов 47, 48 и 49. Нижний конец каждого привода соединен с соответствующим закрепленным на полу шарниром или осью вращения, и верхние концы каждой пары приводов присоединены к общему шарниру или оси вращения, закрепленной на кольце 46. Для упрощения чертежа конструкция этих шарниров не показана. Следует отметить, что горизонтальные линии 50, 51 и 52, проведенные через нижние шарниры пары приводов, перемещены радиально наружу от стенок купола так, чтобы когда купол находится в его исходном неподвижном положении, как показано на фиг. 12 пунктирной линией и на фиг. 10 сплошной линией, все пары приводов наклонялись внутрь. Опорная система поэтому содержит три опорных треугольника, каждый из которых соединен с кольцом, которое можно рассматривать как определяющее дополнительный треугольник конструкции, как показано на фиг. 11.
На фиг. 12 сплошной линией показан купол 45 в смещенном положении, так что приводы 49, по существу, вертикальны. Следует отметить, однако, что кольцо 46 остается, по существу, горизонтальным. Поэтому хотя если нужно, то возможно поворачивать купол 45, нет необходимости предусматривать вертикальные и горизонтальные перемещения, которые можно согласовать посредством приводов, так чтобы обеспечивать совпадение центра сферического купола 45 с точкой глаз пилота-стажера, поддерживаемого первой (внутренней) подвижной платформой 42.
Хотя в устройстве, изображенном на фиг. 8 12, линии 49, 50 и 51 смещены наружу относительно купола, это не является необходимым положением, и, действительно, приводы могут даже в неподвижном положении купола проходить наружу от пола (площадки) вверх к кольцу 46. Необходимо, однако, принять меры предосторожности, чтобы гарантировать, что при таком расположении приводов нижняя часть купола не заблокируется.
Таким образом, устройства на фиг. 8 12 могут представить пилоту-стажеру изображения, покрывающие очень широкое поле зрения (обзор). Кроме того, система относительно компактна, так как купол 45 опирается на подвижную систему, которая простирается вокруг внутренней подвижной системы, на которой сидит пилот-стажер. Купол может быть приспособлен таким образом, что когда приводы не исключены, он просто садится на поверхность опорной площадки. Доступ во внутреннюю часть купола может быть через простой проход, вырезанный в поверхности опорной площадки.
В устройствах на фиг. 8 12 нисходящее поле зрения ограничено тем, что купол и подвижная платформа смонтированы на одной поверхности, и подвижная платформа не может двигаться под эту поверхность.
Нисходящее поле зрения (обзора) можно, однако, легко растянуть, поддерживая подвижную систему пилота-стажера на цоколе, расположенный внутри купола, как показано на фиг. 13. На фиг. 13 использованы те же номера позиций для тех же узлов, что и на фиг. 8. В устройстве на фиг. 13 также схематично показаны проекторы 53, установленные на подходящей опоре 54 позади пилота-стажера. Такое расположение проекторов было рассмотрено в устройствах типа изображенных на фиг. 8 12. В случае фиг. 13, однако, предусмотрены дополнительные проекторы 55 под подвижной платформой, с тем чтобы растянуть площадь купола, на которую можно проецировать изображение. Таким образом можно поучить широкое поле зрения и очень хорошее нисходящее поле зрения. Большая часть купола позади пилота не несет информационного изображения, но тем не менее предусмотрена по чисто конструктивным соображениям. Если, однако, желательно дать пилоту возможность видеть позади него, как это желательно в тренажерах (имитаторах) самолетов-истребителей, можно обеспечить такое расположение, как показано ни фиг. 14, причем нумерация позиций одних и тех же элементов соответствующая. В случае фиг. 14 купол 45 поддерживает ряд проекторов 56, каждый из которых проецирует пучок света через булавочное отверстие в куполе. При соответствующем рассредоточении проекторов можно поддерживать, по существу, любое требуемое поле зрения.
На фиг. 15 схематично изображена система управления, используемая в любом из описанных вариантов настоящего изобретения. Основным в системе управления является то, что купол приспособлен прослеживать перемещения (смещения), но не вращение (повороты) позиции наблюдения пользователя. Поэтому пользователь, например пилот-стажер, манипулирует рычагами 57 управления, на которые тренажер легко реагирует. В дополнение к этому инструктор может манипулировать рычагами 58 управления, чтобы воздействовать на тренажер для усиления обучения пилота.
Из этих управляющих входных сигналов компьютерная система 59 рассчитывает обычным образом требуемое пилоту-стажеру движение. Как только это движение рассчитано, привод 60 первой подвижной системы заставляет известным путем управлять движением первой подвижной системы 61, на которой сидит пилот-стажер. Далее система полностью известная. В соответствии с изображением, однако, компьютер 62 рассчитывает положение позиции наблюдения пилота-стажера обусловленное движением пилота, которое требуется управляющим входным сигналом. Исходя из этого рассчитанного положения позиции наблюдения пилота-стажера, выдается выходной управляющий сигнал, который вынуждает привод 63 второй подвижной системы приводить в движение приводы 64 подвижной системы, которые поддерживают купол. Поэтому привод купола может быть полностью независимыми от поворота позиции наблюдения пилота, давая преимущество в том, что эти повороты не влияют на восприятие изображения, обусловленное тем, что изображение просто проходить по сферической внутренней поверхности купола.
Понятно, что хотя в описанных вариантах изобретения рассматриваемое изображение проецируется на купол, можно, например, поддерживать сферическое зеркало коллимирующей визуальной системы таки же образом, как это описано для сферического дисплейного купола.

Claims (4)

1. Устройство для имитации движения транспортного средства, содержащее первую подвижную платформу, средства управления первой подвижной платформой при вращении и перемещении относительно нулевой позиции, пункт пользователя имитатором, расположенный на первой подвижной платформе и определяющий заданное положение глаз наблюдателя и заданное поле зрения относительно пункта пользователя, и вторую подвижную платформу с дисплейной поверхностью, расположенной на ней с возможностью нахождения в поле зрения наблюдателя, средства управления второй подвижной платформой для обеспечения поддержания заданной позиционной взаимосвязи между глазом наблюдателя и дисплейной поверхностью, и средства проецирования изображения, подлежащего рассмотрению глазами наблюдателя на дисплейной поверхности, отличающееся тем, что дисплейная поверхность выполнена сферической, средства управления второй подвижной платформой выполнены с возможностью приведения ее в движение в ответ на перемещение глаз наблюдателя для обеспечения постоянного положения глаз наблюдателя относительно центра сферической дисплейной поверхности и поддержания ее в стационарном положении в ответ на вращение первой подвижной платформы вокруг глаз наблюдателя, а дисплейная поверхность расположена по своему периметру за пределами заданного поля зрения наблюдателя для обеспечения поворота первой подвижной платформы вокруг его глаз.
2. Устройство по п.1, отличающееся тем, что дисплейная поверхность расположена вокруг первой подвижной платформы и оперта на приводы второй подвижной платформы, которые расположены по периметру первой подвижной платформы.
3. Устройство по п.2, отличающееся тем, что приводы установлены тремя парами, каждая из которых образует с опорным основанием две стороны соответствующего треугольника, вершиной связанного с кольцевой конструкцией, на которой расположена дисплейная поверхность.
4. Устройство по п.3, отличающееся тем, что кольцевая конструкция установлена с возможностью поддержания ее постоянно в горизонтальном положении.
RU9193055132A 1991-03-20 1991-11-26 Устройство для имитации движения транспортного средства RU2093900C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9105875 1991-03-20
GB9105875A GB2253825B (en) 1991-03-20 1991-03-20 Vehicle simulator
PCT/GB1991/002088 WO1992016923A1 (en) 1991-03-20 1991-11-26 Flight simulator

Publications (2)

Publication Number Publication Date
RU93055132A RU93055132A (ru) 1996-07-20
RU2093900C1 true RU2093900C1 (ru) 1997-10-20

Family

ID=10691870

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9193055132A RU2093900C1 (ru) 1991-03-20 1991-11-26 Устройство для имитации движения транспортного средства

Country Status (8)

Country Link
US (1) US5433608A (ru)
EP (1) EP0576427B1 (ru)
AU (1) AU9028291A (ru)
CA (1) CA2106087A1 (ru)
DE (1) DE69121112T2 (ru)
GB (1) GB2253825B (ru)
RU (1) RU2093900C1 (ru)
WO (1) WO1992016923A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599858C2 (ru) * 2011-05-23 2016-10-20 Амст-Зюстемтехник Гмбх Устройство для пространственного перемещения субъектов
RU2715372C1 (ru) * 2019-03-04 2020-02-26 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство имитации вибрирующих объектов

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2279316B (en) * 1993-06-08 1997-03-26 Compacific Engineering Pte Lim Multi-tier jack motion system
EP0784839B1 (en) * 1994-08-01 1999-06-09 Technische Universiteit Delft Method of manufacturing a motion simulator, and a motion simulator
US5724775A (en) * 1996-01-29 1998-03-10 Alternate Realities Corporation Multi-pieced, portable projection dome and method of assembling the same
US6003995A (en) * 1996-10-30 1999-12-21 Raytheon Company Rotating backscreen and/or projectors for off-axis large field of view display
DE19756460C2 (de) * 1997-12-18 2001-06-21 Harald Buck Flugsimulator-Vorrichtung
US5975907A (en) * 1998-04-06 1999-11-02 Technische Universiteit Delft Motion simulator with movable base plate
GB9813045D0 (en) * 1998-06-17 1998-08-12 Thomson Training & Simulation Simulator system
DE19846337C1 (de) * 1998-10-08 2000-03-30 Stn Atlas Elektronik Gmbh Übungssimulator
KR100354343B1 (ko) * 1999-06-11 2002-09-28 김의석 운동모사장치
US6634885B2 (en) * 2000-01-20 2003-10-21 Fidelity Flight Simulation, Inc. Flight simulators
US6176584B1 (en) * 2000-01-28 2001-01-23 Raytheon Company Curved surface, real image dome display system, using laser-based rear projection
US6533670B1 (en) * 2000-08-14 2003-03-18 Universal City Studio, Inc. Amusement ride with pivotable motion base
US20040191730A1 (en) * 2001-12-17 2004-09-30 Pierre Couder Computer-assisted learning method and system for real time reproduction of a vehicle reactions
US20030224333A1 (en) * 2002-05-31 2003-12-04 Jan Vastvedt Suspended Motion system simulation theater
US7195486B2 (en) * 2002-08-06 2007-03-27 Mcgraw Robert W Reconfigurable simulation structure
CA2467008A1 (en) * 2004-05-10 2005-11-10 Fernando Petruzziello Recurrent training machine
DE102005028906A1 (de) * 2005-06-22 2006-12-28 Giesecke & Devrient Gmbh Vorrichtung für die Prüfung von Banknoten
US8241038B2 (en) * 2005-07-08 2012-08-14 Lockheed Martin Corporation Simulator utilizing a non-spherical projection surface
US7708561B2 (en) * 2005-09-23 2010-05-04 Q4 Services Llc Method and apparatus for modifying aircraft simulator wide-angled infinity display equipment mirror to enlarge field of vision and for reskinning aircraft simulator spherical mirror cell to minimize mirror stress and distortion
DE602006013179D1 (de) * 2005-10-12 2010-05-06 Filip Vanbiervliet Verfahren zur steuerung der bewegungen eines flugsimulators und ein solches verfahren implementierender flugsimulator
US20130019703A1 (en) * 2010-03-31 2013-01-24 Corcost Limited Multi axis manoeuvrable platform
US20160048027A1 (en) * 2014-08-18 2016-02-18 Sam Shpigelman Virtual reality experience tied to incidental acceleration
US9792830B2 (en) 2014-10-16 2017-10-17 Sigma Integrale Llc Full motion racing simulator
AT516901B1 (de) * 2015-03-06 2018-07-15 Amst Systemtechnik Gmbh Flugsimulator und Verfahren zur Flugsimulation
US10372289B2 (en) * 2015-12-31 2019-08-06 Beijing Pico Technology Co., Ltd. Wraparound interface layout method, content switching method under three-dimensional immersive environment, and list switching method
TWI614735B (zh) 2016-12-14 2018-02-11 財團法人工業技術研究院 全景視覺系統
US11058961B2 (en) * 2017-03-09 2021-07-13 Kaleb Matson Immersive device
CN109646973A (zh) * 2019-01-03 2019-04-19 北京当红齐天国际文化发展集团有限公司 一种动感半球幕观影系统及其控制方法
CN110910708A (zh) * 2019-11-29 2020-03-24 哈尔滨兆禾机械设备技术开发有限公司 飞行训练模拟器球幕成像结构
US11869387B2 (en) * 2019-12-18 2024-01-09 Embraer S.A. Flight simulator with a visual system integrated in a robotic manipulator
US11694569B2 (en) 2021-11-11 2023-07-04 Beta Air, Llc Systems and methods for simulating an electrical vertical takeoff and landing (eVTOL) aircraft
GB2628220A (en) * 2022-09-23 2024-09-18 Vesaro Ltd Monitor display stand
GB202213910D0 (en) * 2022-09-23 2022-11-09 Vesaro Ltd Monitor display stand

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2442297A (en) * 1939-01-14 1948-05-25 Jr Edwin A Link Training device
US3114979A (en) * 1959-05-15 1963-12-24 Rheem Mfg Company Inc Synthetic projection
US3295224A (en) * 1964-12-07 1967-01-03 Franklin Institute Motion simulator
US3718989A (en) * 1970-09-28 1973-03-06 Singer Co Aircraft simulator visual system
US3732630A (en) * 1970-10-21 1973-05-15 Us Navy Visual simulator
US4350489A (en) * 1980-12-05 1982-09-21 The Singer Company Dome field of view scene extenders
GB2101948B (en) * 1981-07-16 1984-09-26 Rediffusion Simulation Ltd Air combat simulator
US4473355A (en) * 1983-06-30 1984-09-25 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Visual simulator and display screen for said simulator
US4631863A (en) * 1984-08-15 1986-12-30 White Leroy L Door or window guard system
FR2623648B1 (fr) * 1987-11-20 1990-04-13 Ecole Nale Equitation Perfectionnement aux plates-formes a six degres de liberte
US5182150A (en) * 1990-07-16 1993-01-26 United Technologies, Corp. Composite sphere for a motion base simulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Satisfactory Visual and Motion Cueing for Helicopters/VSTOL Simulation. С. Секстона, О. Бачбиджа и докт. М. Робертса из Rediffusion Simulation Society, 1990. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599858C2 (ru) * 2011-05-23 2016-10-20 Амст-Зюстемтехник Гмбх Устройство для пространственного перемещения субъектов
RU2715372C1 (ru) * 2019-03-04 2020-02-26 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Устройство имитации вибрирующих объектов

Also Published As

Publication number Publication date
DE69121112T2 (de) 1997-02-13
US5433608A (en) 1995-07-18
WO1992016923A1 (en) 1992-10-01
EP0576427B1 (en) 1996-07-24
AU9028291A (en) 1992-10-21
GB2253825A (en) 1992-09-23
EP0576427A1 (en) 1994-01-05
GB9105875D0 (en) 1991-05-08
GB2253825B (en) 1994-06-22
CA2106087A1 (en) 1992-09-21
DE69121112D1 (de) 1996-08-29

Similar Documents

Publication Publication Date Title
RU2093900C1 (ru) Устройство для имитации движения транспортного средства
DE68914755T2 (de) System zur Wiedergabe der visuellen Umgebung eines Piloten im Simulator.
Baarspul A review of flight simulation techniques
Duda et al. Design of the DLR AVES research flight simulator
US6152739A (en) Visual display system for producing a continuous virtual image
Johnson et al. What moves, the airplane or the world?
US20080206720A1 (en) Immersive video projection system and associated video image rendering system for a virtual reality simulator
US20060114171A1 (en) Windowed immersive environment for virtual reality simulators
US9470967B1 (en) Motion-based system using a constant vertical resolution toroidal display
US4350489A (en) Dome field of view scene extenders
Schachter Computer image generation for flight simulation
US3557470A (en) Simulator having visually independent display system
US20070141538A1 (en) Simulator utilizing a high resolution visual display
Danek Vertical Motion Simulator Familiarization Guide
US20070196793A1 (en) Deployable training device visual system
Huff et al. Psychological aspects of aeronautical flight simulation.
WO2012083409A1 (en) Simulator with lift-in drop-out cockpit module
Casali et al. Potential design etiological factors of simulator sickness and a research simulator specification
US3371432A (en) Visual simulation
Collyer et al. AWAVS, a research facility for defining flight trainer visual system requirements
US11551572B2 (en) Adjusted-projection panel for addressing vergence-accommodation conflict in a dome-type simulator
Aronson Wide angle visual simulation requirements and experience
GB2349236A (en) Projection systems
Cort et al. Wide-angle, low-altitude flight simulator vision system for cockpit
AU7753098A (en) Flight simulator