RU2093798C1 - Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления - Google Patents

Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления Download PDF

Info

Publication number
RU2093798C1
RU2093798C1 RU95119440A RU95119440A RU2093798C1 RU 2093798 C1 RU2093798 C1 RU 2093798C1 RU 95119440 A RU95119440 A RU 95119440A RU 95119440 A RU95119440 A RU 95119440A RU 2093798 C1 RU2093798 C1 RU 2093798C1
Authority
RU
Russia
Prior art keywords
product
mass
pneumatic
time
products
Prior art date
Application number
RU95119440A
Other languages
English (en)
Other versions
RU95119440A (ru
Inventor
В.К. Битюков
Е.Д. Чертов
В.В. Рыжков
Original Assignee
Воронежская государственная технологическая академия
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Воронежская государственная технологическая академия filed Critical Воронежская государственная технологическая академия
Priority to RU95119440A priority Critical patent/RU2093798C1/ru
Application granted granted Critical
Publication of RU2093798C1 publication Critical patent/RU2093798C1/ru
Publication of RU95119440A publication Critical patent/RU95119440A/ru

Links

Landscapes

  • Jigging Conveyors (AREA)

Abstract

Использование: контрольно-измерительное оборудование автоматических линий упаковочного или расфасовочного назначения. Использование: при определении массы штучных изделий создают под транспортируемым изделием воздушную подушку, затем бесконтактно оказывают воздействие определенной величины на боковую поверхность первоначально неподвижного изделия в направлении последовательного поступательного движения его, измеряют время прохождения изделием контрольного участка, по которому определяют массу изделия. 2 с.п. ф-лы, 1 ил.

Description

Изобретение относится к весоизмерительной технике и может быть использовано в пищевой промышленности для контроля веса упаковок или изделий, имеющих форму параллелепипеда, перемещаемых при помощи пневмотранспортера.
Существует способ бесконтактного контроля массы движущихся изделий путем сообщения колебаний участку пневмоконвейера с размещенным на этом участке изделием, причем с целью повышения точности контроля участку пневмоконвейера при помощи вибратора сообщают гармонические колебания в направлении нормали к его несущей поверхности с частотой, соответствующей частоте свободных колебаний номинального по массе изделия на воздушной прослойке участка пневмоконвейера, а о величине массы изделия судят по амплитуде вынужденных колебаний изделия [1]
Следует отметить, что значительное влияние на точность измерения оказывает масса участка пневмоконвейера и нестабильность параметров колебаний вибратора.
Наиболее близким предлагаемому способу, по сущности изобретения, является способ определения массы изделия при пневмотранспортировании и устройство его реализации [2] при котором создают под транспортируемым изделием воздушную подушку, кратковременным импульсом давления вызывают колебания изделия и определяют массу изделия по периоду его свободных колебаний.
Устройство для определения массы транспортируемого изделия содержит пневмотранспортер с камерой питания,узлы возбуждения и измерения клебаний, причем узел возбуждения размещен в камере питания и выполнен в виде источника импульсного напряжения, подключенного к двум электродам, установленным между собой с искровым зазором, а узел измерения колебаний выполнен в виде двух фотодатчиков поперечных перемещений и измерителя временных промежутков.
В основном погрешность определения массы для данного способа следствие погрешности определения периода колебаний, а точное измерение периода затрудняется при увеличении массы изделия, приходящейся на единицу площади опорной поверхности, из-за уменьшения частоты и амплитуды свободных колебаний. Кроме того, определение значений параметров колебательного движения изделия усложняется из-за малой толщины воздушной подушки. Поэтому указанный способ успешно применяется при контроле массы плоских изделий и плохо применим для определения массы объемных изделий, например, упаковок, имеющих форму параллелепипеда.
Технической задачей является повышение точности бесконтактного измерения массы штучных изделий, близких по форме к параллелепипеду.
Сущность изобретения состоит в том, что создают под транспортируемым изделием воздушную подушку, затем бесконтактно оказывают воздействие определенной величины на боковую поверхность первоначально неподвижного изделия в направлении последующего поступательного движения его, измеряют время прохождения изделием контрольного участка и определяют массу изделия по формуле:
mи=К•(tи)2,
где mи масса контролируемого изделия;
tи время прохождения эталонным изделием контрольного участка;
К коэффициент, зависящий от геометрических параметров изделия (определяется при настройке); для однотипных изделий следует определять из отношения:
Figure 00000002

где 4 mэ масса эталонного изделия;
tэ время прохождения эталонным изделием контрольного участка.
Для определения массы штучных изделий при пневмотранспортировании используется устройство, включающее пневмотранспортер с камерой питания, два установленных над камерой питания фотодатчика перемещений изделия, соединенных с измерителем временных промежутков, вдоль пневмотраспортера над его камерой питания и выше уровня изделия установлены пневматический сопловой элемент, представляющий собой пневмокамеру питания, в нижней части которой выполнены сопла, наклоненные в направлении движения изделия, и связанный с измерителем временных промежутков вычислительный блок, при этом фотодатчики расположены вдоль пневмотранспортера под сопловым элементом.
Технический результат достигается тем, что при воздействии на боковую поверхность изделия, неподвижно лежащего на воздушной подушке, силой fд, направленной вдоль пневмотранспортера, изделие начинает двигаться с ускорением. Определить параметры поступательного движения изделия можно по уравнению динамики:
Figure 00000003

где mи масса изделия;
x текущая координата;
t текущее время;
fд величина силы, действующей вдоль оси координат;
fсв величина силы сопротивления воздуха движению изделия (fсв< fд(Х), поэтому влиянием fсв в дальнейшем будем пренебрегать).
Интегрируя по времени выражение (1), с учетом того что в первоначальный момент времени изделие неподвижно, получим уравнение для скорости поступательного движения изделия:
Figure 00000004
.
Интегрируя по времени выражение (2) и считая, что в нулевой момент изделие находилось в начале координат, получим уравнение:
2 • mи • X fд • t2.
При постоянной силе fд и заданной величине перемещения (длине контрольного участка) масса изделия mи будет пропорциональна квадрату времени прохождения изделием контрольного участка tи:
mи=K•(tи)2.
Коэффициент пропорциональности К можно определить, зная время прохождения контрольного участка изделием эталонной массы, по формуле:
Figure 00000005

где mэ масса эталонного изделия;
tэ время прохождения эталонным изделием контрольного участка.
Устройство, позволяющее реализовать предлагаемый способ, представлено на схеме, изображенной на чертеже.
Устройство представляет собой прямой участок пневмотранспортера (1) с камерой питания (2), два установленных над камерой питания фотодатчика перемещений изделия (3) и (4), соединенных с измерителем временных промежутков (5). Вдоль пневмотранспортера и выше уровня изделия (6) расположен пневматический сопловой элемент (7), представляющий собой пневмокамеру питания (8), в нижней части которой установлены сопла (9), наклоненные в направлении движения изделия. Вычислительный блок (10) связан с измерителем временных промежутков.
Устройство работает следующим образом.
Изделие помещают на воздушную подушку, создающуюся между нижней поверхностью изделия и пневмотранспортером, в зону действия первого фотодатчика (3). Воздушные струи, истекающие из сопел (9) пневматического соплового элемента, воздействуют на боковую поверхность изделия. Составляющая этого воздействия, направленная вдоль пневмотранспортера, заставляет изделие (6) двигаться с ускорением в зону действия второго фотодатчика (4). Измеритель временных промежутков (5) определяет время движения изделия по контрольному участку (между первым и вторым фотодатчиками). Вычислительный блок (10), используя информацию, поступающую с измерителя временных промежутков, рассчитывает массу изделия по формуле (4). Экспериментальный коэффициент К определяется в результате предварительного тарирования устройства с использованием изделия, масса которого известна.

Claims (2)

1. Способ определения массы штучных изделий при пневмотранспортировании, заключающийся в том, что создают под транспортируемым изделием воздушную подушку, отличающийся тем, что бесконтактно оказывают воздействие определенной величины на боковую поверхность первоначально неподвижного изделия в направлении последующего поступательного движения его, измеряют время прохождения изделием контрольного участка и определяют массу изделия по формуле
mи k • (tи)2,
где mи масса контролируемого изделия;
tи время прохождения изделием контролируемого участка;
k коэффициент, зависящий от геометрических параметров изделия и определяемый при настройке, для однотипных изделий определяемый из соотношения
Figure 00000006

где mэ масса эталонного изделия;
tэ время прохождения эталонным изделием контрольного участка.
2. Устройство для определения массы штучных изделий, включающее пневмотранспортер с камерой питания, два установленных над камерой питания фотодатчика перемещений изделия, соединенных с измерителем временных промежутков, отличающееся тем, что вдоль пневмотранспортера над его камерой питания и выше уровня изделия установлены пневматический сопловой элемент, представляющий собой пневмокамеру питания, в нижней части которой выполнены сопла, наклоненные в направлении движения изделия, и связанный с измерителем временных промежутков вычислительный блок, при этом фотодатчики перемещений изделия расположены вдоль пневмотранспортера под сопловым элементом.
RU95119440A 1995-11-20 1995-11-20 Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления RU2093798C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95119440A RU2093798C1 (ru) 1995-11-20 1995-11-20 Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95119440A RU2093798C1 (ru) 1995-11-20 1995-11-20 Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2093798C1 true RU2093798C1 (ru) 1997-10-20
RU95119440A RU95119440A (ru) 1997-10-27

Family

ID=20173854

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95119440A RU2093798C1 (ru) 1995-11-20 1995-11-20 Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2093798C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 1281912, кл. G 01 G 11/00, 1987. 2. Авторское свидетельство СССР N 1610303, кл. G 01 G 11/00, 1990. *

Similar Documents

Publication Publication Date Title
US4905512A (en) Method of continuously measuring a successively conveyed lengthy body
US8067704B2 (en) System and method for weighing particulate material moving on a conveyor
EP0221785A2 (en) Ultra-sonic distance sensor and monitoring of surface profile utilizing ultra-sonic distance sensor
ES2048240T3 (es) Metodo y aparato para la medicion de la tension de un elemento laminar.
JP3090688B2 (ja) 動的荷重測定方法及び動的荷重測定装置
RU2387957C1 (ru) Ленточный весовой дозатор
US10280008B2 (en) Apparatus for adjustably positioning an object of interest
RU2093798C1 (ru) Способ определения массы штучных изделий при пневмотранспортировании и устройство для его осуществления
US5230251A (en) Flowmeter
JP3090686B2 (ja) 動的荷重測定方法及び動的荷重測定装置並びにこれらを用いた荷重測定装置
WO2018169603A1 (en) An apparatus for adjustably positioning an object of interest
RU2087875C1 (ru) Способ определения массы брикетированной продукции и устройство для его осуществления
FI69210B (fi) Massfloedesmaetare
RU2091722C1 (ru) Способ определения массы изделия при пневмотранспортировании
JP5606036B2 (ja) 振動フィーダの制御方法及び振動フィーダ装置と組合せ秤
RU2112223C1 (ru) Способ определения веса брикетированной продукции и устройство для его реализации
DE59507036D1 (de) Abgabe eines Fehlersignals bei einer Bandwaage mit zwei Wägezellen
JPH03134520A (ja) バルク製品の輸送量の測定方法および装置
RU2099672C1 (ru) Устройство бесконтактного контроля массы расфасованной продукции
EP0674158A2 (en) Mass measurement method and apparatus
US20040173031A1 (en) Mass flow measurement
JP2001502427A (ja) 物理量の測定方法および測定装置
RU80233U1 (ru) Ленточный дозатор
RU2093797C1 (ru) Способ бесконтактного определения веса изделий из материалов малой удельной плотности и устройство для его осуществления
RU2805127C1 (ru) Способ определения массы движущегося объекта (варианты)