RU2092699C1 - Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания - Google Patents

Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2092699C1
RU2092699C1 RU94024990A RU94024990A RU2092699C1 RU 2092699 C1 RU2092699 C1 RU 2092699C1 RU 94024990 A RU94024990 A RU 94024990A RU 94024990 A RU94024990 A RU 94024990A RU 2092699 C1 RU2092699 C1 RU 2092699C1
Authority
RU
Russia
Prior art keywords
oil
additive
engine
trace elements
extraction
Prior art date
Application number
RU94024990A
Other languages
English (en)
Other versions
RU94024990A (ru
Inventor
Евгений Павлович Нечаев
Павел Егорович Нечаев
Original Assignee
Евгений Павлович Нечаев
Павел Егорович Нечаев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Павлович Нечаев, Павел Егорович Нечаев filed Critical Евгений Павлович Нечаев
Priority to RU94024990A priority Critical patent/RU2092699C1/ru
Publication of RU94024990A publication Critical patent/RU94024990A/ru
Application granted granted Critical
Publication of RU2092699C1 publication Critical patent/RU2092699C1/ru

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

Использование: изобретение предназначено для стабилизации и улучшения физико-химических свойств моторного масла, работающего в трибохимическом режиме смазки ДВС. Сущность изобретения: способ основан на ведении процессов экстракции и реэкстракции микроэлементов из загрязнений работающих моторных масел (продуктов неполного сгорания топлива, износов деталей трения, нерастворимых осадков нагароотложений, разложения компонентов присадки). Процессы осуществляют непосредственно в эксплуатационных режимах работы ДВС в заданных и контролируемых температурных и магнитных полях в активных зонах аппарата стабилизации масла в сочетании с твердыми антиоксидантами. 7 з.п. ф-лы, 2 табл.

Description

Изобретение относится к смазочным материалам и технической эксплуатации двигателей внутреннего сгорания (ДВС) и может быть использовано при регенерации моторных масел во многих отраслях народного хозяйства.
Известен способ получения присадки к смазочным материалам, который принят за аналог (1). По изобретению процесс ведут инъектированием в базовое масло ДВС присадки с легирующим элементом-компонентом. Последний получают трением образца из заготовки с легирующими элементами в среде основы присадки при нагрузках и скоростях скольжения, обеспечивающих образование продуктов изнашивания коллоидной дисперсности, а также растворимость соединений легирующего компонента. Такая присадка в 1,5-2,0 раза снижает износы деталей трения.
Однако, кроме износостойкости, присадка должна обладать другими положительными функциональными свойствами, например, стабильно удерживать щелочную среду и физико-химические показатели в пределах эксплуатационных норм. Изготовление легирующего компонента по аналогу связано с дополнительным производством, а также с проверкой на совместимость со штатной присадкой масла. Эти недостатки препятствуют широкому внедрению аналога в системы смазки машин.
Общеизвестны и другие аналоги-присадки, вводимые в моторные масла, которые являются многофункциональными. Они дают определенный эффект. Однако механизм действия элементоорганических присадок, представляющих собой соединения серы, хлора, фосфора, бария, сульфата кальция, силоксана и другие изучен еще недостаточно. По своей природе все они являются поверхностно-активными веществами (ПАВ) и дисперсно-гетерогенными по отношению к минеральному маслу. Поэтому они достаточно легко отстаиваются, отфильтровываются и извлекаются в эксплуатационных условиях сепараторами (центрифугами) из системы смазки дизелей от исходных величин. В результате масло во время эксплуатации достаточно быстро срабатывается, становится малоприсадочным, теряет щелочной потенциал, а с накоплением нерастворимых осадков (механических примесей) свыше 4,0% бракуется.
Ближайшим техническим решением к заявленному, принятым за прототип изобретения, является стабилизация смазочного масла с помощью устройства [3] В прототипе повышается эффективность очистки загрязнений с гранул щелочного реагента путем создания барботажа специальным отражателем непосредственно в зоне размещения реагента. При этом образующиеся кислоты в масляной среде постоянно нейтрализуются щелочными реагентами до полной выработки щелочного потенциала. Наряду с положительными факторами в прототипе не решена задача переработки загрязнений масла в микроэлементную структуру и использования микроэлементов в качестве заменителей присадки.
Изобретение в новом аспекте решает проблему защиты масляной среды в системе смазки дизеля путем образования присадочной микроэлементной структуры из загрязнений масла (продуктов неполного сгорания топлива и износов деталей трения, компонентов разложения инъектируемых присадок и нагарообразований). Такая нестандартная микроэлементная защита работающей масляной среды получила название Уникальная микроэлементная внештатная присадка Нечаева.
Техническое решение изобретения направлено на получение уникальной присадки Нечаева с необходимыми микроэлементами непосредственно в системе смазки ДВС путем дробления загрязнений масла до ультрадисперсной фазы через специальные модульные приставки в аппарате стабилизации масла с упаковкой известными щелочными реагентами Григорьева Б.П. (2). При этом решена задача по извлечению микроэлементов из продуктов загрязнения масла и внедрению их в углеводородную среду работающего моторного масла. Таким образом реализована возможность работы ДВС со стабилизацией физико-химических показателей, а также и улучшением их в трех вариантах применения моторных масел с присадкой, без присадки или комбинация с ними. Уровень стабилизации масляной среды регулируется и контролируется микроэлементным составом и уровнем щелочной среды по показателю рН.
Сущность изобретения заключается в том, что циркулирующее моторное масло, выходящее из ДВС, в определенной степени всегда загрязненное и окисленное, направляют в аппарат стабилизации масла. В кассетах аппарата упакованы упомянутые щелочные реагенты и галлоидный дозатор, во впускном патрубке смонтирован специальный диспергатор с модульными поверхностями. При этом кассетный блок дополнительно снабжен постоянным магнитом в специальной кассете. С поступлением масла на модульные поверхности диспергатора продукты загрязнения размельчают до ультрадисперсного уровня в оптимальной щелочно-кислотной среде с рН 6,5.7,5 в температурном поле 65.85oC и магнитном поле 0,4.0,8 Э (по наружному контуру аппарата) преимущественно.
При этом из загрязнений масла извлекают все микроэлементы, которые в них имеются и одновременно их внедряют в углеводородную масляную среду (до полного насыщения), циркулирующей в системе смазки ДВС. Процесс осуществляют непосредственно на омагниченных модульных поверхностях упомянутых приставок и кассетного блока, а также в хемосорбционных реакциях со щелочными реагентами и галлоидом на элементах галлоидного дозатора аппарата стабилизации масла. В результате масляную среду очищают от ненужных загрязнений и насыщают ее спектром тех микроэлементов, которые необходимы для стабилизации физико-химических свойств или их улучшения. Таким образом полученная внештатная уникальная присадка Нечаева синергетична с дозируемыми штатными присадками и работоспособна в бесприсадочном варианте использования моторных масел, а также при регенерации отработанного масла при доливе на угарный процесс, вместо свежего, в дозах, не превышающих 11,0 от емкости масляной системы ДВС.
Стабильность ансамбля насыщаемых микроэлементов и физико-химические показатели контролируют анализами проб масла в сравнении с исходными пробами и селективно оценивают каждый параметр во взаимосвязи их.
Окислительно-восстановительные механизмы в системе смазки ДВС осуществляют путем окисления микроэлементов в парах трения до уровня оксидов, а противоположный процесс процесс восстановления реализуют в аппарате стабилизации масла со спецприставками. В момент образования микроэлементных оксидов в масляной среде, которые в узлах трения, по мнению авторов, работают не на сжатие, а на растяжение, тем самым создают "эффект упругости", что в определенной степени способствует разъединению трущихся поверхностей от схватывания, а также уменьшению коэффициента трения. При таком механизме образования оксидов в узлах трения масляная среда приобретает чешуйчато-пленочную структуру во взаимосвязи с графитом из сажистых загрязнений, скрепленную дисперсными и магнитными силами в активной зоне аппарата стабилизации масла и работающую по закону малых масс.
Для определения эффективности предложенного способа проводят сравнительные эксплуатационные испытания с использованием базового моторного масла, например, М10В2 по ГОСТу 12337-84: в опыте N 1 со штатной присадкой, а в опыте N 2 такое же масло, но без присадки. Для испытаний используют дизель-генератор с дизелем 6ЧН25/34 мощностью 345 кВт. В обоих опытах дизели одинаковых марок с емкостью масляных систем по 340 кг и эксплуатируются с нагрузками от 75 до 85 от номинальной мощности. До проведения опытов дизель-генераторы выработали моторесурсы с начала эксплуатации: в опыте N 1 12600 ч. в опыте N 2 35000 ч. Температурные режимы в системах смазки примерно одинаковые в пределах 65.85oC при давлениях масла 0,19.0,40 МПа (1,9. 4,0 кгс/см2). Масляные системы обоих опытных дизелей оборудованы аппаратами стабилизации масла ТВМ-С со спецприставками, упомянутыми выше, а также упакованными реагентами и галлоидом Григорьева Б.П.
Продолжительность испытаний опыта N 1 2500 ч. опыта N 2 3000 ч. Перед началом испытаний и в конце эксперимента производят отбор контрольных проб масла для лабораторных анализов. Пробы 1 и 2 относятся к опыту N 1, а пробы 3 и 4 к опыту N 2. По перечисленным пробам проводят лабораторные анализы для определения физико-химических показателей. Полученные эксплуатационные данные по упомянутым пробам приведены в табл.1. В дополнение к этому по этим же пробам проводят эмиссионный анализ для определения удельного содержания микроэлементов: фосфора (Р), олова (Sn), кремния (Si), алюминия (Al) и др. Вторую часть микроэлементов определяют атомно-абсорбционной спектроскопией на приборе AAS-IN, среди них: натрий (Na), калий (К), кальций (Ca) и др. В табл.2 представлены для сравнительной оценки опытные данные по ансамблю наиболее информативных 15 микроэлементов. Суммарный балланс этих микроэлементов принимают оптимальной величиной для оценки свойств моторных масел. Для вариантов в случаях экспрессных анализов количество ансамбля микроэлементов уменьшают до рациональной величины и располагаемых возможностей.
Одновременно заметим, что по нормативам дизелестроительного завода для дизелей 6ЧН25/34 установлен ресурс моторного масла М10В2 1500 ч. В эксперименте масло отработало в опыте N 1 2500 ч. в опыте N 2 3000 ч. В обоих опытах для доливки на угар используют свежее масло одинаковой марки М10В2: с присадкой в опыте N 1 и без присадки в опыте N 2.
В эксплуатационном периоде обоих опытов процессы формирования микроэлементной структуры в основу базового масла идентичны, т.е. все продукты загрязнения масел одинаково перерабатывают до дисперсно-молекулярного уровня в однотипных аппаратах стабилизации масла в сочетании с упомянутыми специальными приставками, смонтированными до фильтрующих средств (центрифуг, сепараторов). В системах смазки опытных дизелей отсутствуют штатные сепараторы, вместо них предусмотрены центрифуги. Во время опытов кислотно-щелочной уровень масляной среды поддерживают и/или стабилизируют одновременно, а контроль осуществляют по параметру рН в пределах 6,5.7,5 ед. В таком контролируемом диапазоне образуют своеобразный экстрагент (реагент) в масляной среде дизеля, с помощью которого осуществляют экстракцию и/или реэкстракцию микроэлементов, извлеченных из продуктов загрязнения масла. Для получения такого эффекта экстрагент пропускают через активированные и омагниченные поверхности упомянутых приставок в аппаратах ТВМ-С, а также кассетные упаковки с реагентами. Одновременно с получением такой среды осуществляют окислительно-восстановительные процессы с участием микроэлементов спектра в масле. Таким образом получают в работающей масляной среде дизеля уникальную микроэлементную присадку Нечаева во всех трех вариантах ее обработки (в присадочном, в бесприсадочном или в их комбинациях). При этом ненужное (излишнее) загрязнение в масле удаляют штатными очистными средствами.
Сравнивая опытные данные, приведенные в табл. 1, видим, что полученная уникальная присадка Нечаева по настоящему изобретению позволила улучшить четыре параметра в бесприсадочном масле в сравнении с присадочным маслом (опыт N 1):
по индексу вязкости на 1,7 ед.
по показателю рН на 0,1 ед.
по содержанию нерастворимых в бензине осадков на 0,49
по щелочному числу.
В опыте N 1 получено снижение этого показателя от исходного значения на 2,69 мг КОН/г. а в опыте N 2 (в бесприсадочном варианте), наоборот, произошло улучшение от исходного значения на 1,36 мг КОН/г. Это ключевой эффект данного изобретения. По показателю диспергирующая способность масла в обоих опытах результаты получены одинаковым и на достаточно высоком уровне, составляя 0,7. Такое значение на 0,3 выше браковочного уровня.
О наличии в способе процессов экстракции и реэкстракции характеризуют опытные данный табл.2. По нормативам в товарное моторное масло М10В2 дозируют до 8,5 штатной присадки, что составляет 85000 г/т в удельном измерении. В пробе 1 спектроскопией выявлено наличие микроэлементов состава (из ансамбля 15 наименований) в количестве 2067,7 г/т. В данный спектр вошли все элементы штатной присадки, кроме серы, которую не определяет прибор проведенного спектрального анализа. По некоторым публикациям в работающем моторном масле М10В2 наличие серы составляет 2,89 Такая величина по сере в расчете не учтена и принята как погрешность прибора.
Данные табл.2 свидетельствуют о том, что в исходных пробах N 1 и 3 предельное насыщение микроэлементов по рассматриваемому ансамблю имеет значительную разницу. Суммарный баланс спектра у присадочного масла (опыт N 1) в 5,1 раза выше, чем у бесприсадочного (опыт N 2). В исходных балансах у присадочного масла между заводской дозировкой (85000 г/т) и пробой N1 (2067,7 г/т) транспортные потери штатной присадки составили 83000 г/т. Сюда входят осадки ее в железнодорожных цистернах и в других транспортных средствах от завода-поставщика до потребителя дизельных сельских электростанций. Такая большая потеря компонентов штатной присадки масла М10В2 свидетельствует о гетерогенной природе дозируемых присадок и их отторжения из масляной среды во время работы дизеля.
По окончании эксперимента микроэлементный баланс в опыте N 1 снизился до величины 1640,54 г/т, а в опыте N 2, наоборот, микроэлементный баланс повысился до значения 1650,3 г/т. В результате реализации изобретения произошел процесс сближения микроэлементных балансов между присадочным и бесприсадочными маслами с разницей в 9,76 г/т. Таким образом в предлагаемом способе реализованы процессы экстракции и реэкстракции микроэлементной структуры в работающей масляной среде дизеля, причем селективно путем выбрасывания ненужных микроэлементов и насыщения необходимым спектром микроэлементной структуры. В полученных балансах опыта N 1 процесс экстракции выражен величиной +410,1 г/т, а реэкстракции -427,16 г/т. В бесприсадочном масле (опыт N 2) выявлен только один процесс. Это процесс экстракции микроэлементов (из загрязнений масла) до полного насыщения работающей масляной среды необходимым спектром. В опыте N 2 он получен с положительным результатом и микроэлементный баланс составил 1246 г/т. В опыте N 2 масло не загрязнено излишними присадками, способ реализован лучшим образом и с получением повышенных значений по физико-химическим свойствам.
При проверке изобретения в других опытах были получены положительные результаты по термостойкости масла и коэффициентам трения. Масляная среда с новой уникальной присадкой Нечаева работает с коэффициентом трения f 0,05 -0,06, т. е. не превышает значений модификаторов трения с дисульфид-молибденовой присадкой. В опытной эксплуатации был вариант использования отработанного масла на угарный процесс, вместо свежего, в дозах, не превышающих 11 от емкости масляной системы дизеля. При этом масло регенерировано по всем контролируемым параметрам до уровня эксплуатационных норм.
При использовании изобретения на упомянутых дизелях и при работе на масле М10В2 были выявлены следующие пределы концентрации микроэлементной структуры, г/т:
Цинк (Zn) 650 750
Барий (Ba) 400 500
Кальций (Ca) 200 300
Натрий (Na) 50 150
Фосфор (Р) 100 200
Железо (Fe) 4 45
Хром (Cr) 0,4 6,5
Медь (Cu) 0,4 5,0
Последние три микроэлемента представляют интерес для контроля износа деталей трения ДВС, а также для оптимального их структурирования в масляной среде как модификатор трения и для других процессов.
Таким образом изобретение прошло длительную эксплуатационную проверку на дизелях 6ЧН25/34 в вариантах использования присадочного, бесприсадочного и отработанного масла М10В2. Во всех случаях получены положительные результаты по структурированию масляной среды с улучшением физико-химических свойств. Оптимальные рабочие балансы микроэлементов в моторных маслах могут быть разными по величине и знаку. Они зависят от вида присадок, марки базового масла, типа ДВС и его форсировки (эксплуатационной нагрузки). В связи с этим в каждом конкретном случае получаемые результаты уточняются в конкретных величинах и распространяют на всю серию дизелей.
Применение изобретения позволяет: уменьшать количество компонентов в присадочном масле, применять бесприсадочное масло, улучшает качество работающей масляной среды и обеспечивает ее бессменную работу в длительном периоде, кроме аварийных ситуаций по воде и топливу в системе смазки, исключает сухое трение ДВС при их пуске, снижает износы деталей трения. Все эти результаты подтверждены официальными документами.

Claims (8)

1. Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания путем введения присадки в моторное масло через аппарат стабилизации масла, отличающийся тем, что в качестве присадки в базовом бесприсадочном масле используют микроэлементы загрязнений, попадающих в систему смазки с продуктами неполного сгорания топлива, износа деталей трения, разложения компонентов присадки и нагароотложений, которые размельчают и экстрагируют в устройствах-приставках аппарата стабилизации масла до их фильтрования и сепарирования, при этом микроэлементы намагничивают в магнитном поле и ими насыщают углеводородную масляную среду до предельного поглощаемого значения, а уровень насыщения стабилизируют межфазным кислотно-щелочным экстрагентом, который образует в циркуляционном потоке масла в температурном поле 65 85oС при рН=6,5 7,5.
2. Способ по п.1, отличающийся тем, что стабилизируют и улучшают физико-химические свойства моторного масла со штатной присадкой путем реэкстракции загрязняющих компонентов присадки и одновременной экстракцией недостающих микроэлементов из упомянутых загрязнений до предельного уровня с учетом марки масла, типа двигателя и напряженности работы масляной системы.
3. Способ по п.1, отличающийся тем, что присадку структурируют непосредственно в системе смазки двигателя всеми микроэлементами, содержащимися в его загрязнениях, при этом уровень предельного и стабильного насыщения микроэлементной среды контролируют по балансу ансамбля наиболее информативных микроэлементов, преимущественно (например, для масла МIOВ2), г/т:
Цинк (Zn) 650 750
Барий (Ва) 400 500
Кальций (Са) 200 300
Натрий (Na) 50 150
Железо (Fe) 4 45
Фосфор (Р) 100 200.
4. Способ по п.1, отличающийся тем, что по балансу присадки оценивают совместимость или несовместимость инъектируемой штатной или внештатной присадки с базовым моторным маслом, причем селективно по каждому микроэлементу.
5. Способ по п.1, отличающийся тем, что антифрикционную и температурную стойкость, а также стабильность физико-химических свойств, контролируемых в эксплуатации, осуществляют беспрерывной цикличностью окислительно-восстановительных процессов микроэлементного спектра присадки в углеводородной кислотно-щелочной среде масла путем оксидирования микроэлементов в температурных полях пар трения при штатных нагрузках двигателя и последующего восстановления их в магнитном поле активных зон аппарата стабилизации масла (диспергирования, катализа, резонирования, кавитирования, омагничивания, хемосорбции с реагентами твердого ингибитора и галлоида), при этом контролируют и поддерживают оптимальные значения полей из пределов: по температурному полю 65 85oС, а по магнитному полю 0,4 8,0 Э.
6. Способ по п.1, отличающийся тем, что в процессе экстракции и реэкстракции в присадке структурируют микроэлементы абразивного спектра деталей трения (продукты износа) в углеводородный модификатор трения при их концентрации в масляной среде преимущественно, г/т:
По железу (Fe) 4 45
По хрому (Cr) 0,4 6,5
По меди (Cu) 0,4 5,0.
7. Способ по п.1, отличающийся тем, что путем экстракции и реэкстракции микроэлементов из продуктов загрязнения регенерируют отработанное моторное масло, для чего в работающее масло с присадкой доливают на угар отработавшее моторное масло одинаковой марки, например, с других двигателей, вместо свежего, в дозах, не превышающих 11% от емкости масляной системы двигателя.
8. Способ по п.1, отличающийся тем, что параметры присадки и качество ее работы оценивают и контролируют по лабораторным анализам контрольных проб на физико-химические нормативные показатели и на микроэлементный спектр.
RU94024990A 1994-07-05 1994-07-05 Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания RU2092699C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94024990A RU2092699C1 (ru) 1994-07-05 1994-07-05 Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94024990A RU2092699C1 (ru) 1994-07-05 1994-07-05 Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания

Publications (2)

Publication Number Publication Date
RU94024990A RU94024990A (ru) 1996-05-27
RU2092699C1 true RU2092699C1 (ru) 1997-10-10

Family

ID=20158022

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94024990A RU2092699C1 (ru) 1994-07-05 1994-07-05 Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2092699C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 1643597, кл. C 10 M 177/00, 1991. 2. Авторское свидетельство СССР N 152601, кл. C 23 C 26/00. 1969. 3. Авторское свидетельство СССР N 353054, кл. F 01 M 9/02, 1972. *

Also Published As

Publication number Publication date
RU94024990A (ru) 1996-05-27

Similar Documents

Publication Publication Date Title
CN1198907C (zh) 由脂油和单取代烷撑二胺的反应产物得到的油溶性钼添加剂
JP2007538134A (ja) 使用済みプロセスオイルの精製方法
CN105733774B (zh) 一种发动机清洗油及其制备方法
CN103361165A (zh) 用于轧钢过程中产生的废乳化液的再生设备和方法
CN1244671C (zh) 锰从润滑剂源到燃料燃烧系统的转移
US2842112A (en) Method for reducing corrosion in lubrication systems
RU2092699C1 (ru) Способ стабилизации свойств масла в системе смазки двигателя внутреннего сгорания
Yasutomi et al. Kinetic approach to engine oil. 1. Analysis of lubricant transport and degradation in engine system
JP2004195450A (ja) 潤滑油源から燃料燃焼システムへのモリブデンの搬送方法及び装置
Bardasz et al. Understanding soot mediated oil thickening through designed experimentation part 4: Mack T-8 test
Bardasz et al. Understanding soot mediated oil thickening through designed experimentation-part 1: Mack EM6-287, GM 6.2 L
JP2003176492A (ja) 廃油再生処理剤及び廃油再生処理方法
Denisova et al. Synthesis of magnetic adsorbents for the purification of aquatic environments from oil.
Czerwinski et al. Particle emissions of a TDI-engine with different lubrication oils
TW584664B (en) Fuel additives
Vipper et al. Antifriction action of engine oil additives
Lillywhite et al. Sludge formation: Investigation of sludge formation in gasoline engines
RU2139319C1 (ru) Металлоплакирующий смазочный концентрат для двигателей внутреннего сгорания
Botov Investigation on Novel Polymer Filter Medium for Filtration of Automotive Lubricants
RU2034906C1 (ru) Щелочной реагент для стабилизации моторного масла
Lance et al. Investigation of Lubricant Additive Interactions on Gasoline Particulate Filters
CN1137961C (zh) 一种以磷酸作为脱氮剂时油品脱氮沉渣的处理方法
RU2064970C1 (ru) Смазочная металлоплакирующая композиция
Naeem et al. An alternate acid cleaning process for the regeneration of waste engine oil and a proposed procedure for the disposal of produced sludge
Gabele et al. Passenger car exhaust emission patterns: petroleum and oil shale derived diesel fuels