RU2089284C1 - Способ получения сорбента из лигноцеллюлозного сырья - Google Patents
Способ получения сорбента из лигноцеллюлозного сырья Download PDFInfo
- Publication number
- RU2089284C1 RU2089284C1 RU95119016A RU95119016A RU2089284C1 RU 2089284 C1 RU2089284 C1 RU 2089284C1 RU 95119016 A RU95119016 A RU 95119016A RU 95119016 A RU95119016 A RU 95119016A RU 2089284 C1 RU2089284 C1 RU 2089284C1
- Authority
- RU
- Russia
- Prior art keywords
- sorbent
- raw materials
- solution
- kgy
- sorption
- Prior art date
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Изобретение относится к способам получения сорбента из лигноцеллюлозного сырья. Сущность заявленного технического решения состоит в том, что получение сорбента осуществляют из радиализованного лигноцеллюлозного сырья. Предлагаемый способ обработки отходов лигноцеллюлозного сырья дает возможность получить высокоэффективный сорбент, по сорбционным свойствам сопоставимый с отечественным энтеросорбентом полифепан. По предлагаемому способу упрощается технология получения сорбента. В качестве сырья используются отходы натуральных природных биополимерных материалов.
Description
Изобретение относится к способам получения изобретения из лигноцеллюлозного сырья.
Известен традиционный способ получения сорбента путем жесткого кислотного гидролиза лигноцеллюлозного сырья, получением технологического лигнина и его последующей щелочной варкой, обмывкой водой от растворимых компонентов, нейтрализацией уксусной кислотой, отмывкой водой от избытка уксусной кислоты, разрыхлением и расфасовкой продукта [1]
Недостатком указанного способа является многостадийность, энерго- и материалоемкость процесса переработки лигноцеллюлозного сырья в сорбент.
Недостатком указанного способа является многостадийность, энерго- и материалоемкость процесса переработки лигноцеллюлозного сырья в сорбент.
Наиболее близким по технической сущности является способ получения сорбента на основе древесных опилок, включающий обработку опилок водно-спиртовым раствором, дигексил-α-оксибутилфосфоната [2]
Недостатком известного способа является то, что он не пригоден для применения в медицине, микробиологической и пищевой промышленности, а также невысокая сорбционная способность получаемого материала. Способ требует использования дорогостоящих свежеприготовленных химикатов, многостадийных и трудоемких ручных операций при приготовлении и перемешивании многокомпонентных смесей.
Недостатком известного способа является то, что он не пригоден для применения в медицине, микробиологической и пищевой промышленности, а также невысокая сорбционная способность получаемого материала. Способ требует использования дорогостоящих свежеприготовленных химикатов, многостадийных и трудоемких ручных операций при приготовлении и перемешивании многокомпонентных смесей.
Целью данного изобретения является упрощение технологии получения сорбента из лигноцеллюлозного сырья, повышение экологичности процесса, расширение потребительских свойств сорбента.
Сущность заявляемого технического решения состоит в том, что лигноцеллюлозное сырье предварительно подвергают окислительно- восстановительной деструкции путем облучения ионизирующей радиацией гамма-квантом или пучком ускоренных электронов до поглощенной дозы 40-200 кГр с последующим измельчением и промывкой водой или щелочью при концентрации 0,1-0,5% от растворимых компонентов в течении 0,5 24,0 ч при температуре 293-373 К.
В заявленном техническом решении природное лигноцеллюлозное сырье подвергается предварительной оптимальной радиационной окислительно-восстановительной деструкции. В этом способе 20-90% лигноцеллюлозного сырья после обработки ионизирубщей радиацией и последующего гидролиза переводят в низко-молекулярные водорастворимые фрагменты в виде полиокси-кислот и фенилпропановых кислот,обладающие комплексообразующими свойствами к ионам тяжелых металлов: Сu2+, Co 2+, Се 3+,vo
В предлагаемом способе решается задача полученного твердого нерастворимого сорбента из лигноцеллюлозного сырья, обладающего способностью сорбировать широкую гамму органических и неорганических соединений из водных растворов, биологических субстратов и т.д. Поэтому для сохранения механической прочности основы (матрицы) лигноцеллюлозного сырья при окислительно- восстановительной деструкции облучение ионизирующей радиацией ведут в интервале умеренных поглащенных доз 40-200 кГр Экспериментально установлено, что при облучении сырья до поглащенной дозы в интервале 50-150 кГр практически полностью разрушается лигноуглеводные связи, что способствует при последующем гидролизе удаления из лигноцеллюлозного сырья смолистых, белковых веществ и гемицеллюлоз. Кроме того, при дозах облучения 40-80 кГр сокращаются в 1,5-2 раза энергозатраты на механический помол лигноцеллюлозного сырья. По данным микроскопического анализа в сырье нарушается прочность клеточных оболочек. При дозе облучения 50 кГр молекулярная масса макромолекул целлюлозы в древесине уменьшается в -3 раза, 100 кГр 5-6 раз, 200 кГр 7-8 раз. Дальнейшее увеличение дозы облучения приводит к глубокой деструкции макромолекул и в сырье возрастает содержание нестабильных перекисных продуктов, способствующих деструкции макромолекул до олигомеров. Сорбционная способность образцов предлагаемого препарата зависит от размера частиц (смотри таблицу).
В предлагаемом способе решается задача полученного твердого нерастворимого сорбента из лигноцеллюлозного сырья, обладающего способностью сорбировать широкую гамму органических и неорганических соединений из водных растворов, биологических субстратов и т.д. Поэтому для сохранения механической прочности основы (матрицы) лигноцеллюлозного сырья при окислительно- восстановительной деструкции облучение ионизирующей радиацией ведут в интервале умеренных поглащенных доз 40-200 кГр Экспериментально установлено, что при облучении сырья до поглащенной дозы в интервале 50-150 кГр практически полностью разрушается лигноуглеводные связи, что способствует при последующем гидролизе удаления из лигноцеллюлозного сырья смолистых, белковых веществ и гемицеллюлоз. Кроме того, при дозах облучения 40-80 кГр сокращаются в 1,5-2 раза энергозатраты на механический помол лигноцеллюлозного сырья. По данным микроскопического анализа в сырье нарушается прочность клеточных оболочек. При дозе облучения 50 кГр молекулярная масса макромолекул целлюлозы в древесине уменьшается в -3 раза, 100 кГр 5-6 раз, 200 кГр 7-8 раз. Дальнейшее увеличение дозы облучения приводит к глубокой деструкции макромолекул и в сырье возрастает содержание нестабильных перекисных продуктов, способствующих деструкции макромолекул до олигомеров. Сорбционная способность образцов предлагаемого препарата зависит от размера частиц (смотри таблицу).
Фракция сорбента размерами 0,1-0,25 мм является основной и составляет 75-85 Поэтому она выбрана стандартной для оценки сорбционной способности предлагаемого препарата.
Способ пояснения следующими конкретными примерами.
Пример 1. Древесину березы с размером частиц 1-5 мм (опилки) облучили гамма-квантами кобальта 60 до поглащенной дозы 80 кГр при 293К, измельчали в дезинтеграторе 2 мин по фракции 0,1-0,25 мм и кипятили 0,5 ч при гидромодуле 5 в 0,1 растворе едкой щелочи (КОH), промывали горячей водой на воронке с полотняным фильтром до рH ≃ 6,5 в промывных водах. В раствор перешло 10% исходной навески. Влажную массу препарата отжали и провялили на воздухе по влажности 65% и оценивали показатели его сорбции метиленового синего и клеток Е•coli из водного раствора. Сорбционная способность образцов препарата составила по величине сорбции метиленового синего 56±5 мг/г и клеток Е•Coli 600±40 млн. клеток/г. Адсорбционная способность препарата из облученной древесины березы по метиленовому синему отвечает требованиям фармакопейной статьи ФС 42-2793-91, предъявляемым к медицинскому средству "Полифепан", производимому из технического лигнина. В отличие от препарата полифепан, имеющего темно-коричневый цвет, предлагаемый сорбент имеет белый цвет, что повышает его значение как медицинского средства.
Пример 2. Иллюстрирует применение опилок обработанных по способу, описанному в примере 1. Опилки древесины березы, подготовленные как описано в примере 1, использовали в качестве сорбента в колонке, через которую прогоняли горячий раствор с концентрацией агар-агара 0,85 При замере прозрачности студней, указанного выше раствора агар-агара до и после пропускания через колонку с предлагаемым сорбентом по стандартной методике ГОСТ 26 185-84, светопропускаемость при длине волны λ 670нм возрастала от 40 до 75% соответственно. Таким образом, после пропускания через колонку с предлагаемым сорбентом раствор агар-агара обесцвечивался. Этот пример показывает, что сорбент из радиализованных опилок березы хорошо сорбирует красящие вещества, содержащиеся в морской траве (водоросли анфелции), из которой извлекают агар-агар. Полифепан для этих целей не пригоден.
Пример 3. Опилки древесины сосны с размером частиц 1-5 мм облучали пучком ускоренных электронов с энергией 1,6 Мэв до поглащенной дозы 200 кГр, измельчали, кипятили в 0,5 растворе едкой щелочи и промывали горячей водой до рH= 5,5, как описано в примере 1. В раствор перешло 5% исходной навески. Полученный сорбент в виде нерастворимого остатка влажностью 65% показал сорбционную емкость метиленнового синего 63±8 мг/г.
Пример 4. Образцы соломы с размером частиц 5-10 мм гамма облучали до поглащенной дозы 80 кГр, измельчали, кипятили в воде 1 ч и промывали горячей водой до рH= 4,0, как описано в примере 1. В раствор перешло 12% исходной навески. Полученный препарат в виде нерастворимого остатка влажностью 62% показал сорбционную емкость метиленнового синего 40±10 мг/г.
Пример 5. Опилки древесины лиственницы с размером частиц 2-5 мм гамма-облучали до поглощенной дозы 50 кГр в бассейне выдержки отработанного ядерного топлива реакторов РБМК- 1000 при температуре 323К, измельчали в дезинтеграторе 3 мин до фракции 0,1-0,25 мм и выдерживали в воде при гидромодуле 8-24 ч и промывали горячей водой на воронке с полотняным фильтром до рH=5,0 в промывных водах. В раствор перешло 35% исходной навески. Сорбционная способность образцов препарата из древесины лиственницы составляла по величине сорбции метиленового синего 76±12мг/г и клеток Е•coli 800±100 мнл. клеток/г.
Пример 6. Сорбционный препарат был приготовлен как описано в примере 5. Далее к пробам добавлены 10% раствор мочевины до гидромодуля 6-7 и выдерживали его в герметичной упаковке при комнатной температуре 2-4 суток. После этого пробы отмывали горячей водой до рH=6,5-7,0, в промывных водах и анализировали на содержание связанного азота по стандартным методикам. Результаты анализа показали, что содержание связанного азота в препарате от 0,5% в исходной пробе (в перерасчете на условный белок) возрастало до 8-10% после сорбции мочевины из раствора.
Экспериментально установлено, что предлагаемый способ обработки отходов лигноцеллюлозного сырья дает возможность получить высокоэффективный сорбент, сопоставимый по сорбционным свойствам с одним из лучших известных на сегодняшний день отечественных энтеросорбентов полифепан. По предлагаемому способу упрощается технология получения сорбента, в качестве сырья используются отходы натуральных природных биополимерных материалов и в конечном итоге получаются препараты практически белого или слабоокрашенного цвета более привлекательные для потребителя. По предварительным оценкам себестоимости производства этеросорбента из древесного сырья по предлагаемому способу будет в 1,5-2,0 раза ниже себестоимости препарата полифепан, получаемого химическим методом из технического лигнина.
Список используемой литературы
1. В. П.Леванова. "Лечебный лигнин". Санкт-Петербург, Центр сорбционных технологий, 1992 г. с.136.
1. В. П.Леванова. "Лечебный лигнин". Санкт-Петербург, Центр сорбционных технологий, 1992 г. с.136.
2. H.H. Аносова, Д.H.Медведев, Б.И.Егоров, H.М.Серегина, К.А.Харитонов, В.И.Кириллович. Способ получения сорбента на основе древесных опилок". А.С.N 402379 (СССP) Б.И. 1973 г. N42.
Claims (1)
- Способ получения сорбента из лигноцеллюлозного сырья путем проведения измельчения и частичного гидролиза лигноцеллюлозного сырья, отличающийся тем, что предварительно осуществляют облучение сырья ионизирующей радиацией до поглощенной дозы 40 200 кГр при температуре 293 323 К, а гидролиз ведут при 293 373 К в течение 0,5 24,0 ч в водных растворах с концентрацией щелочи 0,0 0,5%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95119016A RU2089284C1 (ru) | 1995-11-09 | 1995-11-09 | Способ получения сорбента из лигноцеллюлозного сырья |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95119016A RU2089284C1 (ru) | 1995-11-09 | 1995-11-09 | Способ получения сорбента из лигноцеллюлозного сырья |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2089284C1 true RU2089284C1 (ru) | 1997-09-10 |
RU95119016A RU95119016A (ru) | 1997-12-27 |
Family
ID=20173608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95119016A RU2089284C1 (ru) | 1995-11-09 | 1995-11-09 | Способ получения сорбента из лигноцеллюлозного сырья |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2089284C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2471550C1 (ru) * | 2011-10-13 | 2013-01-10 | Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) | Способ получения лигнинового сорбента |
RU2471721C1 (ru) * | 2011-07-05 | 2013-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" | Способ модифицирования сорбентов на основе целлюлозы |
RU2649370C2 (ru) * | 2008-04-30 | 2018-04-02 | Ксилеко, Инк. | Переработка биомассы |
-
1995
- 1995-11-09 RU RU95119016A patent/RU2089284C1/ru active
Non-Patent Citations (1)
Title |
---|
1. Леванова В.П. Лечебный лигнин. - С.-П., Центр сорбционных технологий, 1992, с. 136. 2. Авторское свидетельство СССР N 402379, кл. A 61 K 23/02, 1973. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2649370C2 (ru) * | 2008-04-30 | 2018-04-02 | Ксилеко, Инк. | Переработка биомассы |
RU2471721C1 (ru) * | 2011-07-05 | 2013-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" | Способ модифицирования сорбентов на основе целлюлозы |
RU2471550C1 (ru) * | 2011-10-13 | 2013-01-10 | Учреждение Российской академии наук Институт химии и химической технологии Сибирского отделения РАН (ИХХТ СО РАН) | Способ получения лигнинового сорбента |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3493026B2 (ja) | バイオマスの前処理方法 | |
FI62101C (fi) | Foerfarande foer framstaellning av xylaner spjaelkningsprodukter av desamma och fiberaemnen ur xylanhaltiga vaextraomaterial | |
SU1194282A3 (ru) | Способ разложени лигноцеллюлозного материала | |
US5693296A (en) | Calcium hydroxide pretreatment of biomass | |
Skjåk‐Bræk et al. | Alginate as immobilization material. II: Determination of polyphenol contaminants by fluorescence spectroscopy, and evaluation of methods for their removal | |
Gabhane et al. | Pretreatment of garden biomass by alkali-assisted ultrasonication: effects on enzymatic hydrolysis and ultrastructural changes | |
RU2456394C1 (ru) | Способ переработки целлюлозосодержащего сырья | |
DE69212447T3 (de) | Verfahren zur Herstelllung von Säften aus Früchten und Gemüse | |
KR20060039449A (ko) | 탈수보조제 및 그 제조방법 | |
RU2495830C1 (ru) | Способ извлечения ионов тяжелых металлов из водных растворов | |
Elemike et al. | Agro-waste materials: Sustainable substrates in nanotechnology | |
Zuorro et al. | Tea waste: a new adsorbent for the removal of reactive dyes from textile wastewater | |
RU2089284C1 (ru) | Способ получения сорбента из лигноцеллюлозного сырья | |
CN110509384B (zh) | 一种用于控制甲醛释放的青柿提取产品 | |
FI86268C (fi) | Foerfarande foer framstaellning av lignocellulosamaterialfibrer innehaollande produkter. | |
Ben‐Ghedalia et al. | Effect of ozone and sodium hydroxide treatments on some chemical characteristics of cotton straw | |
RU2311954C2 (ru) | Энтеросорбент и способ его получения | |
RU2340678C1 (ru) | Способ получения пищевого волокна из свекловичного жома | |
JP6941328B2 (ja) | 木材及び木材の製造方法 | |
RU2712907C1 (ru) | Способ модифицирования целлюлозосодержащих сорбентов для извлечения ионов тяжелых металлов из водных растворов | |
FI113375B (fi) | Menetelmä absorboivien aineiden valmistamiseksi lignoselluloosamateriaalista | |
JPS63167796A (ja) | セルロ−ス質材酵素加水分解の前処理方法 | |
Tesema et al. | Analysis of Bagasse Cellulose‐Based Hydrogel for Methylene Blue Removal from Textile Industry Wastewater | |
Li et al. | Optimization of Pretreatment and Alkaline Cooking of Wheat Straw on its Pulpability Using Response Surface Methodology. | |
Yakubu et al. | Chemical modification of wood using vinegar and benzoic acid against termites degradation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |