RU2086866C1 - Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты - Google Patents

Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты Download PDF

Info

Publication number
RU2086866C1
RU2086866C1 RU94004173/06A RU94004173A RU2086866C1 RU 2086866 C1 RU2086866 C1 RU 2086866C1 RU 94004173/06 A RU94004173/06 A RU 94004173/06A RU 94004173 A RU94004173 A RU 94004173A RU 2086866 C1 RU2086866 C1 RU 2086866C1
Authority
RU
Russia
Prior art keywords
air
absorber
condenser
heat
heat exchange
Prior art date
Application number
RU94004173/06A
Other languages
English (en)
Other versions
RU94004173A (ru
Inventor
ков В.Е. Накор
В.Е. Накоряков
Г.А. Паниев
А.В. Горин
В.А. Мухин
Н.И. Матюшкин
П.Т. Петрик
Original Assignee
Институт теплофизики СО РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт теплофизики СО РАН filed Critical Институт теплофизики СО РАН
Priority to RU94004173/06A priority Critical patent/RU2086866C1/ru
Publication of RU94004173A publication Critical patent/RU94004173A/ru
Application granted granted Critical
Publication of RU2086866C1 publication Critical patent/RU2086866C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/046Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for sorption type systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Использование: в теплотехнике, в бромистолитиевых трансформаторах теплоты. Сущность изобретения: устройство содержит по меньшей мере два воздухоотделителя, параллельно подсоединенные к линии отсоса воздуха, включающей вакуумный насос и вентили. Воздухоотделители смонтированы непосредственно в паровом пространстве соответственно абсорбера и конденсатора, заключены в индивидуальные корпуса и снабжены теплообменными поверхностями, помещенными в зернистый слой. Кроме того, воздухоотделитель абсорбера, охладитель раствора и воздухоотделитель конденсатора последовательно соединены трубопроводом охлаждающей воды. Воздухоотделитель абсорбера содержит дополнительно ороситель, размещенный над теплообменной поверхностью и подключенный к трубопроводу подачи слабого раствора. 1 ил.

Description

Изобретение относится к теплотехнике, а более конкретно к бромистолитиевым трансформаторам теплоты.
Известно устройство для улавливания неконденсирующихся газов, в частности воздуха, на охлаждаемой трубе, помещенной в зернистый слой и смонтированной в паровом пространстве конденсатора.
Однако известное устройство обладает следующим недостатком. С помощью такого устройства невозможно улавливать и в дальнейшем удалять газовые примеси из паровой фазы абсорбера бромистолитиевого трансформатора теплоты, так как в абсорбере пары находятся при давлении кипения воды в испарителе, и для их конденсации необходимо иметь температуру охлаждающей воды ниже, чем температура охлажденной технологической воды в испарителе бромистолитиевого трансформатора теплоты.
Так, при работе в режиме холодильной машины давление паров в абсорбере находится в пределах 400-700 Па и для их конденсации требуемая температура охлаждающей воды должна находиться в пределах 3 6oC. В то же время, температура охлажденной в испарителе технологической воды равна 8 12oC, т.е. даже охлаждая с ее помощью теплообменную поверхность, не удается сконденсировать пары на трубах, помещенных в зернистый слой, смонтированных в абсорбере бромистолитиевого трансформатора теплоты.
Известно устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты, содержащего вакуумные насосы и воздухоудалители с теплообменными поверхностями и оросителями, подключенными к трубопроводу слабого раствора, заключенные в индивидуальные корпуса и параллельно подключенные к линии отсоса воздуха, причем воздухоотделитель абсорбера, охладитель раствора и воздухоотделитель конденсатора последовательно соединены трубопроводом охлаждающей воды.
Известное устройство обладает следующими недостатками. Отвод паро-воздушной смеси как из конденсатора, так и из абсорбера, осуществляется из одной точки парового пространства соответствующего аппарата, что не позволяет качественно очистить весь объем пара от воздуха и газовых примесей.
Кроме того, в корпусах воздухоотделителей скапливается воздух, подлежащий удалению, обусловливающий сопротивление массопереносу при абсорбции в самих воздухоотделителях, что приводит к необходимости непрерывного удаления паровоздушной смеси с помощью вакуумных насосов и установки дополнительных воздухоотделителей с непосредственным контактом раствора с паровоздушной смесью.
В основу настоящего изобретения положена задача повышения эффективности очистки паровой фазы от воздуха и газовых примесей, что приводит к увеличению производительности трансформатора теплоты.
Задача решается тем, что в устройстве для удаления воздуха из конденсатора и абсорбера, содержащем последовательно соединенные на линии отсоса воздуха вакуумный насос и воздухоотделитель, а также содержащем охладитель раствора, согласно изобретению, в устройство включены по меньшей мере два воздухоотделителя, параллельно подключенные к линии отсоса воздуха и смонтированные непосредственно в паровом пространстве соответственно абсорбера и конденсатора. Воздухоотделители заключены в индивидуальные корпуса и снабжены теплообменными поверхностями, помещенными в зернистый слой. Воздухоотделитель абсорбера, охладитель раствора и воздухоотделитель конденсатора последовательно соединены трубопроводом охлаждающей воды, а воздухоотделитель абсорбера содержит ороситель, размещенный над теплообменной поверхностью и подключенный к трубопроводу подачи слабого раствора.
На чертеже изображена принципиальная схема бромистолитиевого конденсатора теплоты с устройством для удаления воздуха из конденсатора и абсорбера. Устройство содержит вакуумный насос 1, подсоединенный трубопроводом 2 через вентиль 3 к воздухоотделителю 4, размещенному в корпусе 5, содержащему теплообменную поверхность 6, засыпанную зернистым слоем 7, например стеклянными шариками, удерживаемым перфорированной стенкой 8 в корпусе 5 и смонтированному в паровом пространстве конденсатора 9, соединенного по паровому пространству с генератором 10 и по хладагенту (воде) через гидрозатвор 11 с испарителем 12. Кроме того, насос 1 трубопроводом 13 через вентиль 14 подключен к воздухоотделителю 15, размещенному в корпусе 16, содержащему теплообменную поверхность 17, соединенную последовательно трубопроводом охлаждающей воды 18 через теплообменник 19 с теплообменной поверхностью 6. Над теплообменной поверхностью 17 размещен ороситель 20, подключенный к насосу слабого раствора 21 трубопроводом 22. Теплообменная поверхность 17 помещена в зернистый слой 23, удерживаемый в корпусе 16 перфорированной стенкой 24. Воздухоотделитель 15 смонтирован в паровом пространстве абсорбера 25, соединенного по паровому пространству с испарителем 12 через жалюзийную решетку 26. Испаритель 12 снабжен насосом 27 рециркуляции хладагента (воды). Устройство содержит насос 28 подачи раствора из абсорбера 25 через секцию слабого раствора 29 регенеративного теплообменника 30, содержащего, кроме того, секцию крепкого раствора 31.
Устройство работает следующим образом.
Раствор бромистого лития из абсорбера 25 насосом 28 через секцию 29 регенеративного теплообменника 30 подается в генератор 10, в котором за счет подводимого тепла высокого потенциала, происходит выпаривание из раствора паров хладагента (воды) и концентрация раствора увеличивается. Образовавшийся крепкий раствор покидает генератор 10 и через секцию 31 регенеративного теплообменника 30 поступает в абсорбер 25, а образовавшиеся пары хладагента из генератора 10 направляются в конденсатор 9.
Отсюда пары хладагента с содержащимися в них примесями воздуха и других неконденсирующихся газов проходят через перфорированную стенку 8 воздухоотделителя 4 к охлаждаемой теплообменной поверхности 6 через зернистый слой 7. При этом на теплообменной поверхности 6 происходит конденсация паров, а воздух и другие неконденсирующиеся газы скапливаются и удерживаются в зернистом слое 7, и периодически удаляются по трубопроводу 2 через вентиль 3 вакуумным насосом 1. Пары хладагента, очищенные от воздуха и других газовых примесей, конденсируются на охлаждаемой теплообменной поверхности конденсатора 9, а образовавшийся конденсат через гидрозатвор 11 стекает в испаритель 12.
Насосом 27 осуществляется рециркуляция хладагента, обеспечивающая необходимую плотность орошения теплообменной поверхности испарителя 12, в трубном пространстве которого циркулирует охлаждаемая (технологическая) среда. При этом за счет тепла, отбираемого от охлаждаемой среды, происходит кипение хладагента на теплообменной поверхности испарителя и образовавшиеся пары хладагента направляются из испарителя 12 через жалюзийную решетку 26 в абсорбер 25.
Из абсорбера 25 пары хладагента, с содержащимися в них примесями воздуха и других неабсорбируемых газов, проходят через перфорированную стенку 24 воздухоотделителя 15. Предварительно охлажденный в теплообменнике 19 раствор подается в воздухоотделитель 15 через ороситель 20, абсорбирует поступающие пары хладагента, нагревается за счет выделяющейся теплоты абсорбции и продолжает абсорбировать эти пары, стекающей по теплообменной поверхности 17 охлажденной пленкой жидкости. При этом теплота абсорбции отводится циркулирующей в трубном пространстве охлаждающей водой. В зернистом слое 23 воздухоотделителя 15 накапливаются и удерживаются в нем воздух и другие неабсорбируемые газы, которые периодически удаляются по трубопроводу 13 через вентиль 14 вакуумным насосом 1.
Пары хладагента, очищенные от воздуха и неабсорбируемых примесей, абсорбируются на охлаждаемой теплообменной поверхности абсорбера 25, а образовавшийся слабый раствор подается через секцию 29 теплообменника 30 в генератор 10.
Чтобы обеспечить непрерывность процессов абсорбции, а затем конденсации паров хладагента в воздухоотделителях в схеме предусмотрена определенная последовательность подключения охлаждающей воды к предлагаемому устройству.
При работе в режиме понижающего трансформатора теплоты раствор бромистого лития охлаждается в теплообменнике 19, чем обеспечивается "запас" движущей силы, необходимой для абсорбции паров в начальной стадии при истечении раствора из оросителя 20, а затем, после того как раствор достигает своего равновесного состояния, чтобы продолжить абсорбцию паров, раствор доохлаждается на теплообменной поверхности 17 охлаждающей водой более низкой температуры, чем в теплообменнике 19, и абсорбирует следующие порции паров хладагента. Поэтому вода подается в первую очередь на охлаждение теплообменной поверхности 17, а затем последовательно на охлаждение раствора в теплообменнике 19.
В последнюю очередь охлаждающая вода из теплообменника 19 подается на охлаждение теплообменной поверхности 6 в воздухоотделителе 4 конденсатора 9, в котором пары хладагента находятся при давлении более высоком, чем в абсорбере 25, и для их конденсации, как правило, достаточен температурный уровень охлаждающей воды, прошедшей через теплообменную поверхность 17 и теплообменник 19.
При работе в режиме повышающего трансформатора теплоты пары хладагента в конденсаторе находятся при более низком давлении, чем в абсорбере. Поэтому подача охлаждающей воды должна осуществляться последовательно от теплообменной поверхности 6 к теплообменной поверхности 17, а затем на теплообменник 19 (на схеме не показано).
Таким образом, с помощью предлагаемого устройства, в котором в зернистом слое наряду с процессом конденсации реализуется процесс абсорбции как аналог процесса конденсации, обеспечивается высокое качество очистки паровой фазы как конденсатора, так и абсорбера от воздуха и газовых примесей, причем необходимая для осуществления этих процессов в воздухоотделителях температура охлаждающей воды, как правило, находится на уровне температуры окружающей среды.
Кроме того, процесс очистки паровой фазы от воздуха и других газовых примесей осуществляется с помощью предлагаемого устройства непосредственно в паровом пространстве абсорбера и конденсатора, чем дополнительно гарантируется высокая степень очистки паров хладагента от этих примесей.
Тем самым, ввиду снижения сопротивления газовой фазы массопереносу в конденсаторе и абсорбере обеспечивается эффективность использования теплообменных поверхностей этих аппаратов, а следовательно приводит к увеличению производительности абсорбционного трансформатора теплоты.
В то же время, использование предлагаемого устройства позволяет сократить количество элементов, входящих в систему воздухоудаления, по сравнению с известным устройством.

Claims (1)

  1. Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты, содержащее вакуумный насос и воздухоотделители с теплообменными поверхностями, заключенные в индивидуальные корпуса и параллельно подключенные к линии отсоса воздуха, при этом воздухоотделитель абсорбера, охладитель раствора и воздухоотделитель конденсатора последовательно соединены трубопроводом охлаждающей воды, а воздухоотделитель абсорбера выполнен с оросителем, размещенным над теплообменной поверхностью и подключенным к трубопроводу слабого раствора, отличающееся тем, что устройство выполнено по меньшей мере с двумя воздухоотделителями, расположенными непосредственно в паровом пространстве соответственно абсорбера и конденсатора, и каждый из которых снабжен зернистым слоем, в котором размещена теплообменная поверхность.
RU94004173/06A 1994-02-08 1994-02-08 Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты RU2086866C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94004173/06A RU2086866C1 (ru) 1994-02-08 1994-02-08 Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94004173/06A RU2086866C1 (ru) 1994-02-08 1994-02-08 Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты

Publications (2)

Publication Number Publication Date
RU94004173A RU94004173A (ru) 1995-11-20
RU2086866C1 true RU2086866C1 (ru) 1997-08-10

Family

ID=20152225

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94004173/06A RU2086866C1 (ru) 1994-02-08 1994-02-08 Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты

Country Status (1)

Country Link
RU (1) RU2086866C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 932152, кл. F 25 B 43/04, 1982. Авторское свидетельство СССР N 210881, кл. F 25 B 15/06, 1968. *

Similar Documents

Publication Publication Date Title
US3234109A (en) Method and apparatus for flash distillation
CN107940801B (zh) 一种回收压缩空气余热的空分系统
US3259181A (en) Heat exchange system having interme-diate fluent material receiving and discharging heat
US4467623A (en) Counterflow absorber for an absorption refrigeration system
US6820440B2 (en) Absorption-type air conditioner core structure
US20110048920A1 (en) Adsorbent - Adsorbate Desalination Unit and Method
WO1991000759A1 (en) Method and apparatus for evaporation of liquids
US3404536A (en) In situ flash freezing and washing of concentrated solutions
WO1991000771A1 (en) Air conditioning process and apparatus therefor
US3316727A (en) Absorption refrigeration systems
US3158008A (en) Absorption refrigeration apparatus
WO1991000760A1 (en) Process and apparatus for cooling a fluid
RU2086866C1 (ru) Устройство для удаления воздуха из конденсатора и абсорбера бромистолитиевого трансформатора теплоты
US3240024A (en) Freeze crystallization separation systems
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
KR102198243B1 (ko) 전열관 배열이 개선된 흡수 냉동기용 다층 분리 열교환 방식의 재생 및 응축 열교환 장치
JP2004181373A (ja) エアードライヤー
WO1991000772A1 (en) Air conditioning process and apparatus
KR200172397Y1 (ko) 흡수식 냉동기의 고온 재생기
CN114867300B (zh) 一种吸附式水处理系统
JPH05322358A (ja) 逆浸透膜を利用した吸収式冷水機
JP2001349631A (ja) 吸収冷凍機
CN216868700U (zh) 一种新型变频风冷蒸发式一体机
RU2645496C1 (ru) Блок регенерации насыщенного гликоля (варианты)
JP2001041608A (ja) 吸収冷凍機の蒸発器及び吸収器

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20051130

MM4A The patent is invalid due to non-payment of fees

Effective date: 20060209