RU2085509C1 - Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения - Google Patents

Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения Download PDF

Info

Publication number
RU2085509C1
RU2085509C1 RU94026839A RU94026839A RU2085509C1 RU 2085509 C1 RU2085509 C1 RU 2085509C1 RU 94026839 A RU94026839 A RU 94026839A RU 94026839 A RU94026839 A RU 94026839A RU 2085509 C1 RU2085509 C1 RU 2085509C1
Authority
RU
Russia
Prior art keywords
sulfuric acid
coagulant
terms
mixture
solution
Prior art date
Application number
RU94026839A
Other languages
English (en)
Other versions
RU94026839A (ru
Inventor
В.Н. Диев
Н.А. Сабирзянов
С.П. Яценко
В.С. Анашкин
Л.М. Скрябнева
Original Assignee
Институт химии твердого тела Уральского Отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт химии твердого тела Уральского Отделения РАН filed Critical Институт химии твердого тела Уральского Отделения РАН
Priority to RU94026839A priority Critical patent/RU2085509C1/ru
Publication of RU94026839A publication Critical patent/RU94026839A/ru
Application granted granted Critical
Publication of RU2085509C1 publication Critical patent/RU2085509C1/ru

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Использование изобретения: в технологии очистки сточных вод, а также при получении коагулянта из красного шлама. Сущность: красный шлам глиноземного производства обрабатывают 3-5% соляной кислотой. Полученный твердый остаток обрабатывают 50-55% серной кислотой. Полученную пульпу фильтруют и к полученному раствору добавляют концентрированную серную кислоту до ее общего содержания в растворе 25-50%. Полученный раствор выдерживают 10-20 ч. и отделяют полученный осадок. Осадок представляет собой неорганический коагулянт, содержащий компоненты в мас. %: смесь Al2(SO4)3•nH2O, где n=6, 12, 14 и Al2(SO4)3•H2SO4 •12H2O в пересчете на Al2O3-2-10, FeSO4• H2O в пересчете на Fe2O3 - 2-10, H2SO4 общая - 40-60 (в том числе H2SO4 свободная - 20-40) и H2O кристаллизационная до 100%. Полученным коагулянтом обрабатывают щелочные сточные воды. 3 с.п. ф-лы, 2 табл.

Description

Изобретение относится к технологии получения неорганических веществ и переработке минерального сырья и может быть использовано на предприятиях глиноземного производства и обогатительных фабриках для получения товарного продукта из отходов. Изобретение также относится к технологии очистки сточных вод, имеющих повышенное содержание щелочи, и может быть использовано на водосточных сооружениях, в частности, станциях осветления и нейтрализации промышленных стоков металлургических, обогатительных и химических производств.
Известен неорганический коагулянт, содержащий основное количество алюминия и железа при поддержании следующих соотношений в растворе: молярное отношение железа и алюминия 0,5<Fe/Al<10:SO4/(Fe-Al)<1,5. [1] Известный коагулят из-за относительно низкого содержания сульфат-иона может быть использован только для общего осветления воды, но не может снизить показатель pH и содержание щелочи, а, следовательно, не пригоден для очистки щелочных сточных вод. Способ получения коагулянта включает следующие стадии: выщелачивание с применением серной кислоты алюминия из шлама, содержащего алюминий, до остаточного содержания свободной серной кислоты после реакции выщелачивания 50 г/л; в полученный после выщелачивания раствор добавляют сульфат железа (II), а затем раствор подвергают обработке окислением (там же). Способ предлагает дополнительное введение сульфата железа (II) и проведение стадии окисления.
Известен неорганический коагулянт, представляющий собой смесь Al2(SO4)3 и Fe2(SO4)3 полученную обработкой серной кислотой золы каменных углей, и содержащую 20,8-29,3% Al2O3 и 6,7-13,7 Fe2O3. Однако известный коагулянт может быть использован только для очистки нейтральных сточных вод, поскольку для очистки щелочных вод наряду с осветлением необходима их нейтрализация [2]
Известен также способ получения неорганического коагулянта путем обработки красного шлама глиноземного производства серной кислотой с последующей сушкой и размолом [3] Полученный коагулянт может быть использован для осветления сточных вод.
Таким образом, известные коагулянты на основе сульфатов аммония и железа используют для очистки сточных вод целью общего осветления воды, но они становятся не пригодны в случае щелочных вод, так как наряду с осветлением становится необходимым снижение содержания щелочи.
Следовательно, перед авторами стояла задача разработать неорганический коагулянт для очистки щелочных сточных вод, позволяющий получить наряду с эффектом осветления, также и снижение защелоченности вод.
Поставленная задача решена путем использования для очистки сточных вод неорганического коагулянта, содержащего сульфаты аммония и железа, который дополнительной содержит серную кислоту, а сульфат аммония в виде смесей Al2(SO4)3•nH2O, где n= 6, 12, 14 и Al2(SO4)3•H2SO4 •12H2O, а сульфат железа в виде FeSO4•H2O при следующем соотношении компонентов, мас.
Смесь Al2(SO4)3•nH2O, где n= 6, 12, 14 и Al2(SO4)3•H2SO4•12H2O в пересчете на Al2O3 2-10
FeSO4•H2O в пересчете на Fe2O3 2-10
H2SO4 общая 40-60
В том числе H2SO4 свободная 20-40
H2O кристаллизационная до 100
Способ очистки сточных щелочных вод включает введение коагулянта предлагаемого состава в количестве 0,07-2,5 г/л с последующим перемешиванием и отстаиванием.
Неорганический коагулянт предлагаемого состава может быть получен обработкой красного шлама глиноземного производства серной кислотой, при этом перед обработкой серной кислотой красный шлам глиноземного производства обрабатывают 3-5% соляной кислотой при соотношении Т:Ж=1:5-10, а затем обработке серной кислотой подвергают полученный твердый остаток при концентрации серной кислоты 50-55% и 100-110oC и соотношении Т:Ж=1:6-8, затем полученную пульпу фильтруют и к полученному раствору добавляют концентрированную серную кислоту до получения ее общего содержания в растворе 25-50% полученный раствор выдерживают 10-20 ч и отделяют полученный осадок.
В настоящее время из научно-технической и патентной литературы не известен неорганический коагулянт на основе сульфатов алюминия и железа, содержащий компоненты в предлагаемых пределах, а также способ его получения и использования при очистке щелочных сточных вод.
Неорганический коагулянт предложенного состава может быть получен следующим образом: сухой отвальный красный шлам, содержащий оксиды железа, алюминия, кальция, кремния обрабатывают 3-5%-ной соляной кислотой при перемешивании и соотношении Т: Ж=1:5-10. После этого пульпу фильтруют. Полученный твердый остаток обрабатывают 50-55%-ной серной кислотой при перемешивании, температуре 100-110oC и соотношении Т:Ж=1:6-8. По окончании обработки пульпу фильтруют, при этом получают раствор, содержащий сульфаты алюминия, железа и серную кислоту при мольном соотношении 2,0<Fe/Al<5,5 и 2,0<SO4/Fe+Al<6,2. К полученному раствору добавляют концентрированную серную кислоту (96%) до 100 мас. Смесь выдерживают в течение 10-20 ч за это время вследствии высаливания происходит образование и осаждение твердой фазы. Полученны осадок представляет собой смесь сульфатов алюминия Al2(SO4)3 •nH2O (n=6, 12, 14), Al2(SO4)3 •H2SO4•12H2O и сульфата железа FeSO4•H2O, при этом соотношение 0,6<Fe/Al<5,0 и 5,0<SO4/Fe+Al<10,0.
Основные компоненты находятся в смеси в пределах, мас.
Смесь Al2(SO4) 3•nH2O, где n= 6, 12, 14 и Al2(SO4)3 •H2SO4•12H2O в пересчете на Al2O3 2-10
FeSO4•H2O в пересчете на Fe2O3 2-10
H2SO4 общая 40-60
В том числе H2SO4 свободная 20-40
H2O кристаллизационная до 100
Для очистки щелочных сточных вод, например, металлургических, обогатительных и химических производств полученный коагулянт дозируют из расчета 0,07-2,5 г/л и вводят в сточные воды. Перемешивают и отсеивают в течение 1-2 ч. В результате получают наряду с общим осветлением воды нейтрализацию содержащейся в воде щелочи до допустимых пределов.
Количество вводимого коагулянта объясняется следующими причинами. Введение коагулянта в количестве менее 0,07 г/л для рядовых и 1,5 г/л для аварийных стоков снижает нейтрализующий эффект.
Введение коагулянта в количестве, большем чем 2,5 г/л, для аварийных стоков и 0,15 г/л для рядовых стоков ведет к неоправданному перерасходу реагента и ухудшению показателей качества воды (низкое pH, высокое содержание сульфат-иона).
Пределы содержания компонентов в коагулянте обусловлены следующими причинами. При содержании (мас.) смеси сульфата алюминия в пересчете на Al2O3 ниже 2 и сульфата железа FeSO 4 •H2O в пересчете на Fe2O3 также ниже 2 снижается эффективность осветления. Верхние пределы содержания указанных компонентов в коагулянте обусловлены пределами растворимости оксидов алюминия и железа в сернокислых растворах.
Параметры проведения отдельных стадий предлагаемого способа обусловлены следующим. При обработке соляной кислотой понижение соотношения Т:Ж менее, чем 1: 5 ведет к недостаточному удалению из красного шлама оксида кальция, что создает трудности на стадии сернокислотной обработки. При повышении соотношения Т:Ж более, чем 1:10 неоправданно возрастают материальные потоки. На первой стадии обработки серной кислотой понижение температуры ниже 100oC и соотношения Т:Ж менее, чем 1:6 ведет к уменьшению извлечения в раствор алюминия и железа, а повышение температуры более 110oC и соотношения Т:Ж более, чем 1: 8 вызывает увеличение энерго- и трудоемкости процесса при тех же показателях извлечения.
Выдержка полученной смеси в течение 10-20 ч обусловлена временем процесса высаливания. При выдержке менее 10 ч происходит малый выход коагулянта, выдерживать более 20 ч нецелесообразно, так как процесс высаливания в основном завершается.
Пример 1. Сухой отвальный красный шлам, содержащий, мас. Fe2O3 42,6; Al2O3 14,0; CaO 14,1; SiO2 7,6; TiO2 4,0; остальное до 100, обрабатывают 4%-ной HCl в течение 30 мин при соотношении Т:Ж 1:6 и перемешивании. Затем пульпу фильтруют и получают твердый осадок и сливой раствор. Твердый осадок обрабатывают 50%-ной H2SO4 в течение 40 мин при 100oC и соотношении Т:Ж 1:6. Затем пульпу фильтруют и получают раствор, к которому добавляют 96%-ную H2SO4 из расчета 0,3 л на 1 л раствора, и после перемешивания в течение 1 ч оставляют отстаиваться в течение 12 ч. Затем смесь фильтруют и получают твердый осадок коагулянт, содержащий, мас. смесь Al2(SO4)3•nH2O, где n 6, 12, 14 и Al2(SO4)3•H 2SO4•12H2O в пересчете на Al2 O3 6,7; FeSO4•H2O в пересчете на Fe2O3 3,0; H2SO4общ 46,1; (в т.ч. H2SO4своб. 27,0), H2Oкристаллизованная 44,2. При этом соотношение компонентов составляет: Fe/Al 0,6; SO 4 /Fe + Al 8.
Остальные примеры осуществления способа получения коагулянта приведены в табл. 1.
Примеры использования предлагаемого коагулянта для очистки щелочных сточных вод приведены ниже.
Пример 2. В сточные воды глиноземного и электролизного цехов, содержащие 93 мг/л щелочи при pH 8,6 и 260 мг/л взвешенных веществ вводят коагулянт, содержащий мас. смесь Al2(SO4 )3•nH2O, где n 6, 12, 14 и Al2(SO4)3•H2SO4•12H2O в пересчете на Al2O3 9,0; FeSO4•H2O в пересчете на Fe2O3 2,1; H2SO4общая 49,5; (в т.ч. H2SO4свободная 23,0), H2Oкристаллизационная 39,4, дозированный из расчета 150 мг/л. Перемешивают и отстаивают в течение 1 ч. Получают: содержание щелочи снижается до 46 мг/л, pH снижается до 7,1; содержание взвешенных веществ снижается до 30 мг/л.
При использовании для очистки сточных вод 75%-ной серной кислоты получают: содержание щелочи снижается до 71 мг/л, pH снижается до 7,7; содержание взвешенных веществ снижается до 230 мг/л.
Остальные параметры, иллюстрирующие очистку сточных щелочных вод, приведены в табл. 2.
Таким образом, авторами предлагается способ очистки щелочных сточных вод и коагулянт для очистки, позволяющие получить не только осветляющий эффект, но и значительно снизить содержание щелочи и понизить pH. Кроме того, при производстве предлагаемого коагулянта используют отвальный красный шлам глиноземного производства, что позволяет более полно утилизировать отходы производства.

Claims (2)

  1. Способ очистки щелочных сточных вод путем введения неорганического коагулянта, содержащего сульфаты алюминия и железа, с последующим перемешиванием и отстаиванием, отличающийся тем, что коагулянт содержит, мас.
    Смесь Al2(SO4)3•n H2O, где n 6,12,14, и Al2(SO4)3•H2SO4•12 H2O в пересчете на Al2O3 2 10
    FeSO4•H2O в пересчете на Fe2O3 2 10
    H2SO4 (общая) 40 60
    В том числе H2SO4 (свободная) 20 40
    H2O кристаллизационная До 100
    причем коагулянт вводят в количестве 0,07 2,5 г/л.
  2. 2. Неорганический коагулянт для очистки щелочных сточных вод, содержащий сульфаты алюминия и железа, отличающийся тем, что он дополнительно содержит серную кислоту, сульфат алюминия в виде смеси Al2(SO4)3• nH2O, где n 6,12,14, и Al2(SO4)3 • H2SO4•12H2O, а сульфат железа в виде FeSO4•H2O при следующем соотношении компонентов, мас.
    Смесь Al2(SO4)3•n H2O, где n 6,12,14, и Al2(SO4)3•H2SO4•12 H2O в пересчете на Al2O3 2 10
    FeSO4•H2O в пересчете на Fe2O3 2 10
    H2SO4 (общая) 40 60
    В том числе H2SO4 (свободная) 20 40
    H2O кристаллизационная До 100
    3. Способ получения неорганического коагулянта, включающий обработку красного шлама глиноземного производства серной кислотой, отличающийся тем, что перед обработкой серной кислотой красный шлам глиноземного производства обрабатывают 3 5%-ной соляной кислотой при соотношении Т:Ж 1 5 10, а затем обработке серной кислотой подвергают полученный твердый остаток при концентрации серной кислоты 50 55% температуре 100 110oС и соотношении Т Ж 1 6 8, полученную пульпу фильтруют и к полученному раствору добавляют концентрированную серную кислоту до ее общего содержания в растворе 25 50% полученный раствор выдерживают 10 20 ч и отделяют полученный осадок.
RU94026839A 1994-07-15 1994-07-15 Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения RU2085509C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94026839A RU2085509C1 (ru) 1994-07-15 1994-07-15 Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94026839A RU2085509C1 (ru) 1994-07-15 1994-07-15 Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения

Publications (2)

Publication Number Publication Date
RU94026839A RU94026839A (ru) 1996-08-27
RU2085509C1 true RU2085509C1 (ru) 1997-07-27

Family

ID=20158545

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94026839A RU2085509C1 (ru) 1994-07-15 1994-07-15 Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения

Country Status (1)

Country Link
RU (1) RU2085509C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571116C2 (ru) * 2014-03-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Способ получения адсорбента-коагулянта на основе красного шлама
CN109293163A (zh) * 2018-11-08 2019-02-01 四川山水源环保技术有限公司 一种复合除磷剂及使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Заявка Японии N 6336809, кл.B 01 D 21/01, 1988. 2. Бабенко Е.Д. Очистка воды коагулянтами.- М.: Наука, 1977, с.76. 3. Патент Франции N 2197822, кл.C 02 C 5/02, 1974. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571116C2 (ru) * 2014-03-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Способ получения адсорбента-коагулянта на основе красного шлама
CN109293163A (zh) * 2018-11-08 2019-02-01 四川山水源环保技术有限公司 一种复合除磷剂及使用方法

Also Published As

Publication number Publication date
RU94026839A (ru) 1996-08-27

Similar Documents

Publication Publication Date Title
US3551332A (en) Purification of fluorine-containing industrial waste waters
US6077439A (en) Method for the removal of metals from solution by means of activated silica
RU2085509C1 (ru) Способ очистки щелочных сточных вод, неорганический коагулянт для очистки щелочных сточных вод и способ его получения
JP2005125153A (ja) フッ素含有排水の処理方法及び処理装置
US3827984A (en) Precipitating agent for water purification processes,and a method of preparing same
SK50196A3 (en) Process for the treatment of acidic liquors and simultaneous gaining commercial products and a product for processing water
JP3339352B2 (ja) 汚泥の処理方法
SU1678773A1 (ru) Способ очистки сточных вод от сульфатов
JP2002079004A (ja) 凝集方法
CN1148570A (zh) 氢氧化镁的制造和应用
EA004157B1 (ru) Способ обработки сточных вод
RU2131849C1 (ru) Способ получения коагулирующе-флокулирующего реагента и способ обработки воды
RU2195434C2 (ru) Коагулянт для очистки природных и сточных вод, способ его получения и способ его использования
JPH1034199A (ja) 上水汚泥の処理法
US10759685B2 (en) Water softening treatment using in-situ ballasted flocculation system
SU1330078A1 (ru) Способ очистки сульфатсодержащих сточных вод
SU943207A1 (ru) Способ очистки сточных вод производства двуокиси титана
SU1038281A1 (ru) Способ осветлени фосфорной кислоты
CS257632B1 (cs) Způsob čištění odpadních vod
RU2146299C1 (ru) Способ концентрирования марганца из сливных вод
FR2496630A1 (fr) Preparation d&#39;acide phosphoreux a partir de rejets industriels contenant des phosphites
SU1339093A1 (ru) Способ очистки сточных вод от фосфатов
SU1214605A1 (ru) Способ очистки сточных вод от ионов цветных металлов
SU941306A1 (ru) Способ очистки шламовых сточных вод кварц-полевошпатового производства
KR970011321B1 (ko) 폐수 및 배기가스용 정화제 조성물 및 그의 제조방법